Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expectation-driven sensory adaptations support enhanced acuity during categorical perception

Abstract

Expectations can influence perception in seemingly contradictory ways, either by directing attention to expected stimuli and enhancing perceptual acuity or by stabilizing perception and diminishing acuity within expected stimulus categories. The neural mechanisms supporting these dual roles of expectation are not well understood. Here, we trained European starlings to classify ambiguous song syllables in both expected and unexpected acoustic contexts. We show that birds employ probabilistic, Bayesian integration to classify syllables, leveraging their expectations to stabilize their perceptual behavior. However, auditory sensory neural populations do not reflect this integration. Instead, expectation enhances the acuity of auditory sensory neurons in high-probability regions of the stimulus space. This modulation diverges from patterns typically observed in motor areas, where Bayesian integration of sensory inputs and expectations predominates. Our results suggest that peripheral sensory systems use expectation to improve sensory representations and maintain high-fidelity representations of the world, allowing downstream circuits to flexibly integrate this information with expectations to drive behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Models of expectation-driven sensory modulation.
Fig. 2: Context-dependent categorical perception paradigm.
Fig. 3: Decision-making behavior reflects Bayesian integration.
Fig. 4: Neurometric functions of single units reflect perceptual likelihood.
Fig. 5: Predictive syllables suppress spike rate.
Fig. 6: Context-dependent spike train modulation reflects change in perceptual acuity and not Bayesian integration.
Fig. 7: Expectation improves perceptual acuity.

Similar content being viewed by others

Data availability

Data are available at https://zenodo.org/records/7363595 (ref. 75).

Code availability

Code and code documentation are available at https://github.com/timsainb/cdcp_paper.

References

  1. Ganong, W. F. Phonetic categorization in auditory word perception. J. Exp. Psychol. Hum. Percept. Perform. 6, 110–125 (1980).

    Article  PubMed  Google Scholar 

  2. Marslen-Wilson, W. D. & Welsh, A. Processing interactions and lexical access during word recognition in continuous speech. Cogn. Psychol. 10, 29–63 (1978).

    Article  Google Scholar 

  3. Norris, D., McQueen, J. M. & Cutler, A. Prediction, Bayesian inference and feedback in speech recognition. Lang. Cogn. Neurosci. 31, 4–18 (2016).

    Article  PubMed  Google Scholar 

  4. Kuhl, P. K. Human adults and human infants show a ‘perceptual magnet effect’ for the prototypes of speech categories, monkeys do not. Percept. Psychophys. 50, 93–107 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Kuhl, P. K. Early language acquisition: cracking the speech code. Nat. Rev. Neurosci. 5, 831–843 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Feldman, N. H., Griffiths, T. L. & Morgan, J. L. The influence of categories on perception: explaining the perceptual magnet effect as optimal statistical inference. Psychol. Rev. 116, 752–782 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Knill, D. C. & Richards, W. Perception as Bayesian Inference (Cambridge University Press, 1996).

  8. Kuperberg, G. R. & Jaeger, T. F. What do we mean by prediction in language comprehension? Lang. Cogn. Neurosci. 31, 32–59 (2016).

    Article  PubMed  Google Scholar 

  9. Stocker, A. A. and Simoncelli, E. A Bayesian model of conditioned perception. Adv. Neural Inf. Process. Syst. 2007, 1409–1416 (2007).

  10. Yon, D., Gilbert, S. J., de Lange, F. P., & Press, C. Action sharpens sensory representations of expected outcomes. Nat. Commun. 9, 4288 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Summerfield, C. & De Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745–756 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Kok, P., Jehee, J. F. M. & De Lange, F. P. Less is more: expectation sharpens representations in the primary visual cortex. Neuron 75, 265–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Rohenkohl, G., Cravo, A. M., Wyart, V. & Nobre, A. C. Temporal expectation improves the quality of sensory information. J. Neurosci. 32, 8424–8428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Correa, Ángel, Lupiáñez, J. & Tudela, P. Í. O. Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychon. Bull. Rev. 12, 328–334 (2005).

    Article  PubMed  Google Scholar 

  15. Xin, Y. et al. Sensory-to-category transformation via dynamic reorganization of ensemble structures in mouse auditory cortex. Neuron 103, 909–921 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, K. & Sjerps, M. J. Speaker normalization in speech perception. In the Handbook of Speech Perception (eds Pardo, J. S. et al.) 145–176 (Wiley, 2021).

  17. Gerrits, E. & Schouten, M. E. H. Categorical perception depends on the discrimination task. Percept. Psychophys. 66, 363–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. McMurray, B. The myth of categorical perception. J. Acoust. Soc. Am. 152, 3819–3842 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ganguli, D. & Simoncelli, E. P. Efficient sensory encoding and Bayesian inference with heterogeneous neural populations. Neural Comput. 26, 2103–2134 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Echeveste, R., Aitchison, L., Hennequin, G. & Lengyel, M. Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference. Nat. Neurosci. 23, 1138–1149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sohn, H. & Narain, D. Neural implementations of Bayesian inference. Curr. Opin. Neurobiol. 70, 121–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Findling, C. et al. Brain-wide representations of prior information in mouse decision-making. Preprint at bioRxiv https://doi.org/10.1101/2023.07.04.547684 (2023).

  23. Vilares, I. & Kording, K. Bayesian models: the structure of the world, uncertainty, behavior, and the brain. Ann. N. Y. Acad. Sci. 1224, 22–39 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Darlington, T. R., Beck, J. M. & Lisberger, S. G. Neural implementation of Bayesian inference in a sensorimotor behavior. Nat. Neurosci. 21, 1442–1451 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Funamizu, A., Kuhn, B. & Doya, K. Neural substrate of dynamic Bayesian inference in the cerebral cortex. Nat. Neurosci. 19, 1682–1689 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Hou, H., Zheng, Q., Zhao, Y., Pouget, A. & Gu, Y. Neural correlates of optimal multisensory decision making under time-varying reliabilities with an invariant linear probabilistic population code. Neuron 104, 1010–1021 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Walker, E. Y., Cotton, R. J., Ma, WeiJi & Tolias, A. S. A neural basis of probabilistic computation in visual cortex. Nat. Neurosci. 23, 122–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Yin, P., Strait, D. L., Radtke-Schuller, S., Fritz, J. B. & Shamma, S. A. Dynamics and hierarchical encoding of non-compact acoustic categories in auditory and frontal cortex. Curr. Biol. 30, 1649–1663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sohn, H., Narain, D., Meirhaeghe, N. & Jazayeri, M. Bayesian computation through cortical latent dynamics. Neuron 103, 934–947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berkes, P., Orbán, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hiratani, N. & Latham, P. E. Rapid Bayesian learning in the mammalian olfactory system. Nat. Commun. 11, 3845 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lange, R. D. & Haefner, R. M. Task-induced neural covariability as a signature of approximate Bayesian learning and inference. PLoS Comput. Biol. 18, e1009557 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. International Brain Laboratory et al. A brain-wide map of neural activity during complex behaviour. Preprint at bioRxiv https://doi.org/10.1101/2023.07.04.547681 (2023).

  36. Mirza, M. B., Adams, R. A., Friston, K. & Parr, T. Introducing a Bayesian model of selective attention based on active inference. Sci. Rep. 9, 13915 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G. Active inference: a process theory. Neural Comput. 29, 1–49 (2017).

    Article  PubMed  Google Scholar 

  38. Todorovic, A., van Ede, F., Maris, E. & de Lange, F. P. Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J. Neurosci. 31, 9118–9123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Todorovic, A., Schoffelen, J.-M., Van Ede, F., Maris, E. & De Lange, F. P. Temporal expectation and attention jointly modulate auditory oscillatory activity in the beta band. PLoS ONE 10, e0120288 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Block, N. The puzzle of perceptual precision. Open Mind (2014).

  41. Anton-Erxleben, K. & Carrasco, M. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat. Rev. Neurosci. 14, 188–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prather, J. F., Nowicki, S., Anderson, R. C., Peters, S. & Mooney, R. Neural correlates of categorical perception in learned vocal communication. Nat. Neurosci. 12, 221–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lachlan, R. F. & Nowicki, S. Context-dependent categorical perception in a songbird. Proc. Natl Acad. Sci. USA 112, 1892–1897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    Article  PubMed  Google Scholar 

  45. Fechner, G. T. Elements of Psychophysics, 1860 (Appleton-Century-Crofts, 1948).

  46. Singh, N. C. & Theunissen, F. E. Modulation spectra of natural sounds and ethological theories of auditory processing. J. Acoust. Soc. Am. 114, 3394–3411 (2003).

    Article  PubMed  Google Scholar 

  47. Hauber, M. E., Cassey, P., Woolley, S. & Theunissen, F. E. Neurophysiological response selectivity for conspecific songs over synthetic sounds in the auditory forebrain of non-singing female songbirds. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 193, 765–774 (2007).

    Article  PubMed  Google Scholar 

  48. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, E. C. & Lewicki, M. S. Efficient auditory coding. Nature 439, 978–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arxiv.org/abs/1312.6114 (2013).

  51. Ashwood, Z. C. et al. Mice alternate between discrete strategies during perceptual decision-making. Nat. Neurosci. 25, 201–212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    Article  PubMed  Google Scholar 

  53. Raymond, J. E., Shapiro, K. L. & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: an attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 18, 849–860 (1992).

    Article  PubMed  Google Scholar 

  54. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    Article  CAS  PubMed  Google Scholar 

  55. Kozlov, A. S. & Gentner, T. Q. Central auditory neurons have composite receptive fields. Proc. Natl Acad. Sci. USA 113, 1441–1446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang, E. F. et al. Categorical speech representation in human superior temporal gyrus. Nat. Neurosci. 13, 1428–1432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Best, C. T. & Tyler, M. D. Nonnative and second-language speech perception. In Language Experience in Second Language Speech Learning (Bohn, O.-S. & Munro, M. J.) 13–34 (John Benjamins, 2007).

  58. Sainburg, T. & Gentner, T. Q. Toward a computational neuroethology of vocal communication: from bioacoustics to neurophysiology, emerging tools and future directions. Front. Behav. Neurosci. 15, 811737 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Arneodo, Z., Sainburg, T., Jeanne, J. & Gentner, T. An acoustically isolated European starling song library. Zenodo https://doi.org/10.5281/zenodo.3237217 (2019).

  60. Sainburg, T., Thielk, M. & Gentner, T. Q. Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires. PLoS Comput. Biol. 16, e1008228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    Article  PubMed  Google Scholar 

  62. Newville, M. et al. lmfit/lmfit-py: 1.0.3. Zenodo https://doi.org/10.5281/zenodo.598352 (2021).

  63. Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M. & Harris, K. D. Fast and accurate spike sorting of high-channel count probes with KiloSort. Adv. Neural Inf. Process. Syst. 29, 4448–4456 (2016).

    Google Scholar 

  64. Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Groof, G. et al. A three-dimensional digital atlas of the starling brain. Brain Struct. Funct. 221, 1899–1909 (2016).

    Article  PubMed  Google Scholar 

  66. Güntürkün, O. The avian ‘prefrontal cortex’ and cognition. Curr. Opin. Neurobiol. 15, 686–693 (2005).

    Article  PubMed  Google Scholar 

  67. Kröner, S. & Güntürkün, O. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): a retro- and anterograde pathway tracing study. J. Comp. Neurol. 407, 228–260 (1999).

    Article  PubMed  Google Scholar 

  68. Nieder, A. Inside the corvid brain—probing the physiology of cognition in crows. Curr. Opin. Behav. Sci. 16, 8–14 (2017).

    Article  Google Scholar 

  69. Fellous, J.-M., Tiesinga, P. H. E., Thomas, P. J. & Sejnowski, T. J. Discovering spike patterns in neuronal responses. J. Neurosci. 24, 2989–3001 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schreiber, S., Fellous, J.-M., Whitmer, D., Tiesinga, P. & Sejnowski, T. J. A new correlation-based measure of spike timing reliability. Neurocomputing 52, 925–931 (2003).

    Article  PubMed  Google Scholar 

  71. Theilman, B., Perks, K. & Gentner, T. Q. Spike train coactivity encodes learned natural stimulus invariances in songbird auditory cortex. J. Neurosci. 41, 73–88 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jeanne, J. M., Sharpee, T. O. & Gentner, T. Q. Associative learning enhances population coding by inverting interneuronal correlation patterns. Neuron 78, 352–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Panzeri, S., Moroni, M., Safaai, H. & Harvey, C. D. The structures and functions of correlations in neural population codes. Nat. Rev. Neurosci. 23, 551–567 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Fitzgerald, J. D., Rowekamp, R. J., Sincich, L. C. & Sharpee, T. O. Second order dimensionality reduction using minimum and maximum mutual information models. PLoS Comput. Biol. 7, e1002249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sainburg, T. European starling categorical perception chronic ephys and behavior dataset. Zenodo https://doi.org/10.5281/zenodo.7363594 (2022).

Download references

Acknowledgements

T.S. acknowledges support from a CARTA Fellowship to T.S. and NIH 5T32MH020002-20 to T.S. T.Q.G. acknowledges support from NIH 5R01DC018055-02. PTM acknowledges support from the Kavli Institute for Brain and Mind (IRG no. 2021-1759), ‘La Caixa’ Foundation and an IIE Fulbright Fellowship. E.M.A. acknowledges support from a Pew Latin American Fellowship in the Biomedical Sciences and the Kavli Institute for the Brain and Mind (IRG no. 2021-1759). We thank B. Datta, J. Pearl, A. Pouget and C. Findling for valuable feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.S., T.S.M. and T.Q.G. designed experiments. T.S. and T.S.M. carried out experiments. E.M.A., S.R., M. Turvey, B.H.T., P.T.M. and M. Thielk aided in carrying out experiments and provided advice on study design. T.S.M. performed all analyses related to MNE receptive fields. T.S. performed all other analyses. T.S., T.S.M. and T.Q.G. wrote the paper; all other authors provided feedback.

Corresponding authors

Correspondence to Tim Sainburg or Timothy Q. Gentner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Response times reflect Bayesian integration.

(A) Response time across birds for correct versus incorrect trials. (B; top) The imposed prior probability in the task for each condition. (B; bottom) Average response time over morph for each cue condition (mean and 95% bootstrapped CI). (C) Response time over the morph for each bird (mean and 95% bootstrapped CI). (D) Decay constants of exponential decay fit to reaction time as a function of distance from decision boundary, in relation to the slope of the fit psychometric function, for each bird and morph. Point colors reflect the morph categories (as in Fig. 3G) (Pearson’s correlation, n=121).

Extended Data Fig. 2 Recording sites.

(A) Diagram of auditory input to the songbird brain. Nuclei OV projects to the primary auditory region Field L, which has bidirectionally projections with NCM and CMM. NCL (not pictured), lateral to NCM, additionally exhibits bilateral projections with Field L. (B) A visualization of recording sites, shown over top of the starling brain atlas65. Colors are consistent with panel A, with NCL being shown in purple. (C) The top of each panel shows a spectrogram of the morph stimulus played back. Below, a trace is shown for three cue conditions (No cue, P(RlC) = 0.125, and P(RlC) = 0.875) corresponding to the average Gaussian convolved spike vector and 95% CI for active trials. Below the trace are sample spike rasters for each cue condition, where each row is a trial. Below the rasters, the sample trace and raster plots are repeated for the same unit in the passive trial condition.

Extended Data Fig. 3 An outline of the acuity trade-off model.

(A) A decrease in measurement/representational noise reduces similarity and improves discriminability between stimuli. (B) When stimuli are sampled from regions of stimulus space that are sufficiently close to one another, similarity increases in the task-relevant dimension. (C) The difference between similarity matrices for the left-cued and right-cued syllables, based upon the 1D task-relevant model. The example from (A) and (B) are marked as dots with arrows pointing towards them. (D) Empirical results from our study. The observed shift in spike train vector cosine similarity for left-cued minus right-cued trials. The shift is depicted here is averaged across units and morphs. Compare to (C), where the diagonal does not match the predictions from the 1D model. (E) Predictions of the acuity trade-off model. If there are 0 task-irrelevant dimensions, points that are close to each other in stimulus space will become more similar because noise in measurement is reduced. As more task-relevant dimensions are added, the similarity of close points decreases. (F) A scatterplot of the noise in measurement for task-relevant and irrelevant dimensions under the acuity trade-off model. When a stimulus is cued, the noise in measurement is reduced in a task-relevant dimension (here the morph dimension) and noise is increased in another dimension.

Extended Data Fig. 4 Maximum Noise Entropy encoder model fit to neural data.

(A) A sample MNE receptive field prediction. (top) Raw spectrogram of the target syllable on an individual trial. (middle) Actual (red) and receptive field model predicted (teal) spiking probability (same trial). (bottom) Raster plot of spiking events (same trial). (B) Correlation values between actual and predicted spiking for cue-valid vs. cue-invalid trials. Trial correlation values were averaged across valid or invalid trials for each unit on an example recording day (N = 98 units). (C) Box plots for the distribution of trial averaged correlation values (as in H) for all units broken down by cue-validity and strength. (* indicates significantly increased correlation value for valid verses invalid trials, post-hoc t-test, Cue 0.125, t(9078) = 19.5, p < 0.001; Cue 0.25, t(9377) = 18.2, p < 0.001; Cue 0.75, t(9379) = 18.6, p < 0.001; Cue 0.875, t(9101) = 17.0, p < 0.001).

Extended Data Fig. 5 Example units (rows) for each brain region, showing stability in response profiles to example stimuli (columns) across days/weeks.

The units shown are the 3 longest-held units for each brain region. PSTHs are shown for the 1-second reinforced stimuli.

Extended Data Fig. 6 Spectrograms of 8 sample morph points (of 128 total) from each morph used in the experiment.

The starting morph points are written above the left and rightmost syllables.

Extended Data Fig. 7 Method for computing a neurometric function from a similarity matrix.

SC1 (Similarity to Category 1) and SC1 (Similarity to Category 2) represent the within and between category similarities.

Extended Data Fig. 8 Sample units for each subject sorted by the categoricality metric.

Each plot depicts the average firing rate across a randomly sampled unit, sorted by the categoricality metric, with time on the X-axis and morph position on the Y-axis. Rows correspond to the subject written on the left.

Extended Data Fig. 9 Sample units for each morph sorted by the categoricality metric.

Each plot depicts the average firing rate across a randomly sampled unit, sorted by the categoricality metric, with time on the X-axis and morph position on the Y-axis. Rows correspond to the morph written to the left.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–16

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sainburg, T., McPherson, T.S., Arneodo, E.M. et al. Expectation-driven sensory adaptations support enhanced acuity during categorical perception. Nat Neurosci 28, 861–872 (2025). https://doi.org/10.1038/s41593-025-01899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-025-01899-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing