Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Mapping human thalamocortical connectivity with electrical stimulation and recording

Abstract

The brain’s functional architecture is shaped by electrophysiological interactions between its components, encompassing both cortical and subcortical structures. In this study, we provide an atlas of electrophysiological causal connections across 4,864 brain sites in 27 human participants using repeated single-pulse electrical stimulations and recordings with intracranial electrodes implanted in cortical regions and multiple thalamic nuclei. We show distinct spectral signatures elicited by perturbations of specific brain areas. Identified features of causal connectivity exhibited highly organized yet distinct patterns, indicating that each feature may correspond to a separate mode of information transmission across brain regions. Notably, we report a new waveform with unique temporal and spatial characteristics specifically linked to thalamic stimulations, namely delayed-onset theta oscillations in both ipsilateral and contralateral cortical regions. These findings contribute to a more detailed understanding of the human brain’s functional architecture and offer valuable data for the development of biologically informed computational models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complex and variable electrophysiological responses (local field potential) evoked by the stimulation of a given site.
Fig. 2: Illustration of data processing pipeline.
Fig. 3: Spectrograms of stimulation-evoked power within and between UMAP localizers.
Fig. 4: Electrophysiological neural features indicating different types of connectivity and illustration of the decoding process.
Fig. 5: The timing of feature presence (that is, the latency of maximum representation of the feature).
Fig. 6: Anatomical landscapes of feature presence.
Fig. 7: Late thalamocortical compared with early thalamocortical/corticothalamic connections.

Similar content being viewed by others

Data availability

Preprocessed electrophysiological data for replicating the reported results are deposited at Zenodo and will be available upon publication (https://doi.org/10.5281/zenodo.15330862)62. The standard brain atlas used for group-level visualization is based on publicly available FS_LR brain surface: https://github.com/Washington-University/HCPpipelines/blob/master/global/templates/standard_mesh_atlases/. Source data are provided with this paper.

Code availability

All customized codes are deposited at Zenodo and will be available upon publication (https://doi.org/10.5281/zenodo.15330862)62. Any additional information about the current study can be requested from the corresponding author.

References

  1. Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).

    Article  PubMed  Google Scholar 

  2. Shine, J. M., Lewis, L. D., Garrett, D. D. & Hwang, K. The impact of the human thalamus on brain-wide information processing. Nat. Rev. Neurosci. 24, 416–430 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matsumoto, R. et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–2330 (2004).

    Article  PubMed  Google Scholar 

  4. Ojeda Valencia, G. et al. Signatures of electrical stimulation driven network interactions in the human limbic system. J. Neurosci. 43, 6697–6711 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller, K. J., Muller, K. R. & Hermes, D. Basis profile curve identification to understand electrical stimulation effects in human brain networks. PLoS Comput. Biol. 17, e1008710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jedynak, M. et al. Variability of single pulse electrical stimulation responses recorded with intracranial electroencephalography in epileptic patients. Brain Topogr. 36, 119–127 (2023).

    Article  PubMed  Google Scholar 

  7. Wu, T. Q. et al. Multisite thalamic recordings to characterize seizure propagation in the human brain. Brain 146, 2792–2802 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).

    Article  PubMed  Google Scholar 

  9. Stieger, J. R. et al. Cross-regional coordination of activity in the human brain during autobiographical self-referential processing. Proc. Natl Acad. Sci. USA 121, e2316021121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Call, C. L. & Bergles, D. E. Cortical neurons exhibit diverse myelination patterns that scale between mouse brain regions and regenerate after demyelination. Nat. Commun. 12, 4767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golden, E. C., Graff-Radford, J., Jones, D. T. & Benarroch, E. E. Mediodorsal nucleus and its multiple cognitive functions. Neurology 87, 2161–2168 (2016).

    Article  PubMed  Google Scholar 

  12. Togo, M. et al. Distinct connectivity patterns in human medial parietal cortices: evidence from standardized connectivity map using cortico-cortical evoked potential. Neuroimage 263, 119639 (2022).

    Article  PubMed  Google Scholar 

  13. Groppe, D. M. et al. Dominant frequencies of resting human brain activity as measured by the electrocorticogram. Neuroimage 79, 223–233 (2013).

    Article  PubMed  Google Scholar 

  14. Hacker, C. D., Snyder, A. Z., Pahwa, M., Corbetta, M. & Leuthardt, E. C. Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage 149, 446–457 (2017).

    Article  PubMed  Google Scholar 

  15. Jones, E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Groenewegen, H. J. & Berendse, H. W. The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci. 17, 52–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Fisher, R. et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51, 899–908 (2010).

    Article  PubMed  Google Scholar 

  18. Castro-alamancos, M. A. & Connors, B. W. Thalamocortical synapses. Prog. Neurobiol. 51, 581–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Gray, C. M. Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1, 11–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Timofeev, I. & Chauvette, S. Thalamocortical oscillations: local control of EEG slow waves. Curr. Top. Med. Chem. 11, 2457–2471 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Jasper, H. Diffuse projection systems: the integrative action of the thalamic reticular system. Electroencephalogr. Clin. Neurophysiol. 1, 405–420 (1949).

    Article  CAS  PubMed  Google Scholar 

  22. Engel, J. Jr. & Pitkanen, A. Biomarkers for epileptogenesis and its treatment. Neuropharmacology 167, 107735 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Caciagli, L., Bernhardt, B. C., Hong, S.-J., Bernasconi, A. & Bernasconi, N. Functional network alterations and their structural substrate in drug-resistant epilepsy. Front. Neurosci. 8, 411 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fleury, M. et al. Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia 63, 2597–2622 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pittau, F., Grova, C., Moeller, F., Dubeau, F. & Gotman, J. Patterns of altered functional connectivity in mesial temporal lobe epilepsy. Epilepsia 53, 1013–1023 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roger, E. et al. Hubs disruption in mesial temporal lobe epilepsy. A resting-state fMRI study on a language-and-memory network. Hum. Brain Mapp. 41, 779–796 (2020).

    Article  PubMed  Google Scholar 

  27. Li, L. et al. Topographical reorganization of brain functional connectivity during an early period of epileptogenesis. Epilepsia 62, 1231–1243 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mazrooyisebdani, M. et al. Graph theory analysis of functional connectivity combined with machine learning approaches demonstrates widespread network differences and predicts clinical variables in temporal lobe epilepsy. Brain Connect. 10, 39–50 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ofer, I. et al. Association between seizure freedom and default mode network reorganization in patients with unilateral temporal lobe epilepsy. Epilepsy Behav. 90, 238–246 (2019).

    Article  PubMed  Google Scholar 

  30. Liao, W. et al. Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum. Brain Mapp. 32, 883–895 (2011).

    Article  PubMed  Google Scholar 

  31. Widjaja, E., Zamyadi, M., Raybaud, C., Snead, O. C. & Smith, M. L. Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy. AJNR Am. J. Neuroradiol. 34, 2386–2392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Z. et al. Impaired attention network in temporal lobe epilepsy: a resting FMRI study. Neurosci. Lett. 458, 97–101 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. McGinn, R. et al. Ictal involvement of the pulvinar and the anterior nucleus of the thalamus in patients with refractory epilepsy. Neurology 103, e210039 (2024).

    Article  PubMed  Google Scholar 

  34. Buzsaki, G. Rhythms of the Brain (Oxford University Press, 2006).

  35. Penttonen, M. & Buzsáki, G. Natural logarithmic relationship between brain oscillators. Thalamus Relat. Syst. 2, 145–152 (2003).

    Article  Google Scholar 

  36. Steriade, M. Impact of network activities on neuronal properties in corticothalamic systems. J. Neurophysiol. 86, 1–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & Den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Keller, C. J. et al. Mapping human brain networks with cortico-cortical evoked potentials. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130528 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Veit, M. J. et al. Temporal order of signal propagation within and across intrinsic brain networks. Proc. Natl Acad. Sci. USA 118, e2105031118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seguin, C. et al. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 111, 1391–1401 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Guo, Z. H. et al. Epileptogenic network of focal epilepsies mapped with cortico-cortical evoked potentials. Clin. Neurophysiol. 131, 2657–2666 (2020).

    Article  PubMed  Google Scholar 

  43. Kunieda, T., Yamao, Y., Kikuchi, T. & Matsumoto, R. New approach for exploring cerebral functional connectivity: review of cortico-cortical evoked potential. Neurol. Med. Chir. (Tokyo) 55, 374–382 (2015).

    Article  PubMed  Google Scholar 

  44. Keller, C. J. et al. Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc. Natl Acad. Sci. USA 108, 10308–10313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arthuis, M. et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132, 2091–2101 (2009).

    Article  PubMed  Google Scholar 

  46. Guye, M. et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129, 1917–1928 (2006).

    Article  PubMed  Google Scholar 

  47. Pizzo, F. et al. The ictal signature of thalamus and basal ganglia in focal epilepsy: a SEEG study. Neurology 96, e280–e293 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Filipescu, C. et al. The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia 60, e25–e30 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Evangelista, E. et al. Does the thalamo-cortical synchrony play a role in seizure termination? Front Neurol. 6, 192 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gadot, R., Korst, G., Shofty, B., Gavvala, J. R. & Sheth, S. A. Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review. J. Neurosurg. 137, 1210–1225 (2022).

    Article  PubMed  Google Scholar 

  51. Ilyas, A., Tandon, N. & Lhatoo, S. D. Thalamic neuromodulation for epilepsy: a clinical perspective. Epilepsy Res. 183, 106942 (2022).

    Article  PubMed  Google Scholar 

  52. Chaitanya, G. et al. Robot-assisted stereoelectroencephalography exploration of the limbic thalamus in human focal epilepsy: implantation technique and complications in the first 24 patients. Neurosurg. Focus 48, E2 (2020).

    Article  PubMed  Google Scholar 

  53. Romeo, A. et al. Early ictal recruitment of midline thalamus in mesial temporal lobe epilepsy. Ann. Clin. Transl. Neurol. 6, 1552–1558 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. McKhann, G. M. Editorial. Dulling the double-edged sword of human SEEG research. Neurosurg. Focus 48, E3 (2020).

    Article  PubMed  Google Scholar 

  55. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    Article  PubMed  Google Scholar 

  56. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. Neuroimage 62, 782–790 (2012).

    Article  PubMed  Google Scholar 

  57. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Papademetris, X. et al. BioImage suite: an integrated medical image analysis suite: an update. Insight J. 2006, 209 (2006).

    PubMed  PubMed Central  Google Scholar 

  59. Groppe, D. M. et al. iELVis: an open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J. Neurosci. Methods 281, 40–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.03426 (2020).

  61. McInnes, L. et al. hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2, 205 (2017).

    Article  Google Scholar 

  62. Lyu, D. Causal cortical and thalamic connections in the human brain. Zenodo https://doi.org/10.5281/zenodo.15330862 (2025).

Download references

Acknowledgements

We are grateful to the patients who agreed to participate in our research, as well as to the staff in the EEG lab, including clinical fellows and attending physicians, whose assistance enabled this research. We express our gratitude to our colleagues R. Matsumoto (University of Kyoto, Kyoto, Japan), C. Keller (Stanford University, Palo Alto, CA, USA), K. Körding (University of Pennsylvania, Philadelphia, PA, USA) and R. T. Knight (University of California, Berkeley, Berkeley, CA, USA) for their valuable feedback; and to L. McInnes (Ottawa, Canada) for running a sanity check on our UMAP analysis approach. This work was supported by research grants from the US National Institute of Neurological Disorders and Stroke (R01NS078396 and R21NS113024), US National Institute of Mental Health (1R01MH109954 and P50MH109429) and US National Science Foundation (BCS1358907 and BCS1850938 to J.P.).

Author information

Authors and Affiliations

Authors

Contributions

D.L. contributed to the conception, acquisition, analysis and interpretation of data, and creation of new codes and measures used in the work and writing of the manuscript. J.R.S. contributed to the analysis and interpretation of data. Z.L. contributed to the acquisition of data. V.B. performed surgeries and contributed to the acquisition and interpretation of data and the editing of the manuscript. J.P. contributed to the conception and design of the work, the acquisition and interpretation of data and the writing of the manuscript. All authors provided significant feedback throughout the study and manuscript preparation and have approved the submitted version.

Corresponding author

Correspondence to Josef Parvizi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Riki Matsumoto, Nicholas Schiff and other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Supplementary Tables 1–9.

Reporting Summary

Supplementary Table 8

Significance testing results for all post hoc comparisons with either feature presentation (‘Fx_peak’) or feature latency (‘Fx_time’) as dependent variables (x being 1, 2 and 3).

Source data

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, D., Stiger, J.R., Lusk, Z. et al. Mapping human thalamocortical connectivity with electrical stimulation and recording. Nat Neurosci 28, 1797–1809 (2025). https://doi.org/10.1038/s41593-025-02009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-025-02009-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing