Abstract
Understanding how brains learn and remember remains among the most important challenges in science. Recent studies in the hippocampus implicate a new form of synaptic plasticity, named behavioral timescale synaptic plasticity (BTSP), in the generation of experience-based learning and memory. BTSP is a strong, bidirectional type of plasticity that affects synaptic weights over many seconds of time. It is induced by single dendritic plateau potentials, as opposed to many action potentials, and is thus capable of producing new place cells in one trial. Plateau potential initiation is controlled, at least in part, by local feedback inhibition and an instructive input from a higher-order brain region that potentially links the plasticity to current experience. The new credit assignment procedure in BTSP provides a nonstandard mechanism for memory storage and retrieval that could mitigate the need for widespread synapse stabilization. In addition, it may allow hippocampal networks both to form memories of specific behavioral episodes and to generalize on the basis of past episodes. Finally, recent BTSP investigations could provide a basis for future explorations into how brains learn and remember, ranging from the systems and cognitive levels down to the basic biochemical building blocks of learning and memory.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Hull, C. L. Principles of Behavior: an Introduction to Behavior Theory (Appleton-Century, 1943).
Hebb, D. The Organization of Behavior (Wiley, 1949).
Marr, D. & Brindley, G. S. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 (1971).
Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).
Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).
Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).
Martin, S. J. & Morris, R. G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002).
Gallistel, C. R. & Matzel, L. D. The neuroscience of learning: beyond the Hebbian synapse. Annu. Rev. Psychol. 64, 169–200 (2013).
Gold, A. R. & Glanzman, D. L. The central importance of nuclear mechanisms in the storage of memory. Biochem. Biophys. Res. Commun. 564, 103–113 (2021).
Gershman, S. J. The molecular memory code and synaptic plasticity: a synthesis. Biosystems. 224, 104825 (2023).
Amaral, D. & Lavenex, P. in The Hippocampus Book (eds. Andersen, P. et al.) 37–114 (Oxford Univ. Press, 2007).
Sutton, R. S. & Barto, A. G. Toward a modern theory of adaptive networks: expectation and prediction. Amer. Pysch. Assoc. 88, 135–170 (1981).
Marblestone, A. H., Wayne, G., Kording, K. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10, 94 (2016).
Richards, B. A. & Lillicrap, T. P. Dendritic solutions to the credit assignment problem. Curr. Opin. Neurobiol. 54, 28–36 (2019).
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).
Malenka, R. C. & Bear, M. LTP and LTD: an embarrassment of riches. Neuron 30, 5–21 (2004).
Nicoll, R. A. A brief history of long-term potentiation. Neuron 93, 281–290 (2017).
Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).
Feldman, D. E. The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012).
Song, S. & Abbott, L. F. Cortical development and remapping through spike-timing-dependent plasticity. Neuron 32, 339–350 (2001).
Yao, H. & Dan, Y. Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32, 315–323 (2001).
Butts, D. A. & Kanold, P. O. The applicability of spike time dependent plasticity to development. Front. Synaptic Neurosci. 2, 30 (2010).
Rosenblatt, F. Two theorems of statistical separability in the perceptron. In Mechanisation of Thought Processes: Proceedings of a Symposium held at the National Physical Laboratory 1, 421–456 (HM Stationary Office, 1958).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. in Parallel Distributed Processing: Explorations in the Microstructure of Cognition (eds. Rumelhart, D. E. et al.) 318–362 (MIT Press, 1986).
Turner, R. W., Meyers, D. E., Richardson, T. L. & Barker, J. L. The site of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J. Neurosci. 11, 2270–2280 (1991).
Stuart, G. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).
Stuart, G. & Häusser, M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13, 703–712 (1994).
Magee, J. C. & Johnston, D. Characterization of single voltage-gated sodium and calcium channels in the apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487, 67–90 (1995).
Hoffman, D., Magee, J. C., Colbert, C. & Johnston, D. Potassium channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).
Magee, J. C. & Johnston, D. A synaptically-controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).
Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997).
Magee, J. C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).
Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).
Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 389, 338–341 (1999).
Magee, J. C. & Carruth, M. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 82, 1895–1901 (1998).
Golding, N. L., Jung, H. Y., Mickus, T. & Spruston, N. Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J. Neurosci. 19, 8789–8798 (1999).
Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).
Ariav, G., Polsky, A. & Schiller, J. Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 7750–7758 (2003).
Losonczy, A. & Magee, J. C. Integrative properties of radial oblique dendrites in CA1 pyramidal neurons. Neuron 50, 291–307 (2006).
Tsay, D., Dudman, J. T. & Siegelbaum, S. A. HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56, 1076–1089 (2007).
Davie, J. T., Clark, B. A. & Häusser, M. The origin of the complex spike in cerebellar Purkinje cells. J. Neurosci. 28, 7599–7609 (2008).
Xu, N. L. et al. Nonlinear dendritic integration of sensory and motor input produces an object localization signal. Nature 492, 247–251 (2012).
Harnett, M. T., Xu, N. L., Magee, J. C. & Williams, S. Potassium channels control the interaction between active dendritic compartments in layer 5 cortical pyramidal neurons. Neuron 79, 516–529 (2013).
Harnett, M. T., Magee, J. C. & Williams, S. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal. J. Neurosci. 79, 516–529 (2015).
Williams, S. & Fletcher, L. N. Dendritic substrate for the cholinergic control of neocortical output. Neuron 101, 486–499 (2019).
Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).
Steward, O. & Scoville, S. A. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J. Comp. Neurol. 169, 347–370 (1976).
Cauller, L. J., Clancy, B. & Connors, B. W. Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J. Comp. Neurol. 390, 297–310 (1998).
Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).
Takahashi, H. & Magee, J. C. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62, 102–111 (2009).
Kampa, B., Letzkus, J. & Stuart, G. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. J. Physiol. 574, 283–290 (2006).
Sjöström, P. J. & Häusser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227–238 (2006).
Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral timescale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).
Körding, K. P. & König, P. Supervised and unsupervised learning with two sites of synaptic integration. J. Comput. Neurosci. 11, 207–215 (2001).
Urbanczik, R. & Senn, W. Learning by the dendritic prediction of somatic spiking. Neuron 81, 521–528 (2014).
Payeur, A. et al. Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nat. Neurosci. 24, 1010–1019 (2021.
Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).
Morris, R. G., Garrud, P., Rawlins, J. N. & O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).
Eichenbaum, H. Still searching for the engram. Learn. Behav. 44, 209–222 (2016).
Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 367, eaaw4325 (2020).
Squire, L. R. The legacy of patient H.M. for neuroscience. Neuron 61, 6–9 (2009).
O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).
Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).
Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).
Sheffield, M., Michael, E. J., Adoff, D. & Dombeck, D. A. Increased prevalence of calcium transients across the dendritic arbor during place field formation. Neuron 96, 490–504 (2017).
Grienberger, C. & Magee, J. C. Entorhinal cortex directs learning-related changes in CA1 representations. Nature 611, 554–562 (2022).
Dupret, D., O’Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).
Hollup, S. A., Molden, S., Donnett, J. G., Moser, M. B. & Moser, E. I. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci. 21, 1635–1644 (2001).
Turi, G. F. et al. Vasoactive intestinal polypeptide-expressing interneurons in the hippocampus support goal-oriented spatial learning. Neuron 101, 1150–1165 (2019).
Zaremba, J. D. et al. Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion. Nat. Neurosci. 20, 1612–1623 (2017).
Pettit, N. L., Yap, E. -L., Greenberg, M. E. & Harvey, C. D. Fos ensembles encode and shape stable spatial maps in the hippocampus. Nature 609, 327–334 (2022).
Rolotti, S. V. et al. Local feedback inhibition tightly controls rapid formation of hippocampal place fields. Neuron 110, 783–794 (2022).
Robinson, N. T. M. et al. Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183, 1586–1599 (2020).
Megias, M., Emri, Z., Freund, T. F. & Gulyas, A. I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).
Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015).
Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).
Epsztein, J., Brecht, M. & Lee, A. K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).
Grienberger, C., Milstein, A. D., Bittner, K. C., Romani, S. & Magee, J. C. Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells. Nat. Neurosci. 20, 417–426 (2017).
Cohen, J. D., Bolstad, M. & Lee, A. K. Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. Elife 6, e23040 (2017).
Zhao, X., Wang, Y., Spruston, N. & Magee, J. C. Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus. Nat. Neurosci. 23, 881–891 (2020).
Milstein, A. D. et al. Bidirectional synaptic plasticity rapidly modifies hippocampal representations. eLife 10, e73046 (2021).
Zhao, X., Hsu, C. L. & Spruston, N. Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus. Neuron 110, 96–108 (2022).
Xiao, K., Li, Y., Chitwood, R. A. & Magee, J. C. A critical role for CaMKII in behavioral timescale synaptic plasticity in hippocampal CA1 pyramidal neurons. Sci. Adv. 9, eadi3088 (2023).
Diamantaki, M. et al. Manipulating hippocampal place cell activity by single-cell stimulation in freely moving mice. Cell Rep. 23, 32–38 (2018).
Fan, L. Z. et al. All optical physiology resolves a synaptic basis for behavioral timescale plasticity. Cell 186, 543–559 (2023).
Gonzalez, K. C. et al. Synaptic basis of feature selectivity in hippocampal neurons. Nature 637, 1152–1160 (2025).
Priestley, J. B., Bowler, J. C., Rolotti, S. V., Fusi, S. & Losonczy, A. Signatures of rapid plasticity in hippocampal CA1 representations during novel experiences. Neuron 110, 1978–1992 (2022).
Geiller, T. et al. Local circuit amplification of spatial selectivity in the hippocampus. Nature 601, 105–109 (2022).
O’Hare, J. K. et al. Compartment-specific tuning of dendritic feature selectivity by intracellular Ca2+ release. Science 375, 1670 (2022).
O’Dell, T. J. Behavioral timescale cooperativity and competitive synaptic interactions regulate the induction of complex spike burst-dependent long-term potentiation. J Neurosci. 42, 2647–2661 (2022).
Sumegi, M. et al. Diverse calcium dynamics underlie place field formation in hippocampal CA1 pyramidal cells. eLife 13, RP103676 (2024).
Madar, A. D., Jiang, A., Dong, C. & Sheffield, M. E. J. Synaptic plasticity rules driving representational shifting in the hippocampus. Nat. Neurosci. 28, 848–860 (2025).
Qian, F. K., Li, Y. & Magee, J. C. Experience-dependent place cell referencing in hippocampal area CA1. Nat. Neurosci. 28, 1486–1496 (2025).
Li, Y., Briguglio, J. J., Romani, S. & Magee, J. C. Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3. Cell 187, 6804–6819 (2024).
Vaidya, S. P., Li, G., Chitwood, R. A., Li, Y. & Magee, J. C. Formation of an expanding memory representation in the hippocampus. Nat. Neurosci. 28, 1510–1518 (2025).
Dorian, C. C., Taxidis, J., Arac, A. & Golshani, P. Behavioral timescale synaptic plasticity in the hippocampus creates non-spatial representations during learning and is modulated by entorhinal inputs. Preprint at bioRxiv https://doi.org/10.1101/2024.08.27.609983 (2025).
Bowler, J. C. & Losonczy, A. Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation. Neuron. 111, 4071–4085 (2023).
Issa, J. B. et al. Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward. Nat. Neurosci. 27, 536–546 (2024).
Bengio, Y. Deriving differential target propagation from iterating approximate inverses. Preprint at https://arxiv.org/abs/2007.15139 (2020).
Kawaguchi, Y. & Hama, K. Two subtypes of non-pyramidal cells in rat hippocampal formation identified by intracellular recording and HRP injection. Brain Res. 411, 190–195 (1987).
Leão, R. et al. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat. Neurosci. 15, 1524–1530 (2012).
Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).
Udakis, M., Claydon, M., Zhu, H. W., Oakes, E. C. & Mellor, J. R. Hippocampal OLM interneurons regulate CA1 place cell plasticity and remapping. Nat. Commun. 16, 9912 (2025).
Neubrandt, M., Lenkey, N. & Vervaeke, K. VIP interneurons control hippocampal place cell remapping through transient disinhibition in novel environments. Preprint at bioRxiv https://doi.org/10.1101/2025.02.01.636072 (2025)
Campbell, E. P., Martin, L., Magee, J. C. & Grienberger, C. Dendrite-targeting OLM interneurons regulate the formation of experience-dependent CA1 place cell representations. Preprint at bioRxiv https://doi.org/10.64898/2025.12.21.695825
Amit, D. J. & Fusi, S. Learning in neural networks with material synapses. Neural Comput. 6, 957–982 (1994).
Fusi, S. Memory capacity of neuronal network models. Preprint at https://arxiv.org/abs/2108.07839v2 (2021).
French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999).
Mermillod, M., Bugaiska, A. & Bonin, P. The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects. Front. Psychol. 4, 504 (2013).
Zemla, R., Moore, J. J., Hopkins, M. D. & Basu, J. Task-selective place cells show behaviorally driven dynamics during learning and stability during memory recall. Cell Rep. 41, 111700 (2022).
Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).
Hainmueller, T. & Bartos, M. Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature 558, 292–296 (2018).
Lee, J. S. et al. The statistical structure of the hippocampal code for space as a function of time, context and value. Cell 183, 620–635 (2020).
Grosmark, A. D., Sparks, F. T., Davis, M. J. & Losonczy, A. Reactivation predicts the consolidation of unbiased long-term cognitive maps. Nat. Neurosci. 24, 1574–1585 (2021).
Gonzalez, W. G., Zhang, H., Harutyunyan, A. & Lois, C. Persistence of neuronal representations through time and damage in the hippocampus. Science 365, 821–825 (2019).
Rubin, A. et al. Hippocampal ensemble dynamics timestamp events in long-term memory. elife 4, e12247 (2015).
Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S. Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019).
Fusi, S., Drew, P. J. & Abbott, L. A. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).
Benna, M. & Fusi, S. Computational principles of synaptic memory consolidation. Nat. Neurosci. 19, 1697–1706 (2016).
Lahiri, S. & Ganguli, S. in Advances in Neural Information Processing Systems 26 (eds. Burges, C. J. et al.) 1034–1042 (Curran Associates, 2015).
McKenzie, S. et al. Preexisting hippocampal network dynamics constrain optogenetically induced place fields. Neuron 109, 1040–1054 (2021).
Zheng, Z. S. et al. Perpetual step-like restructuring of hippocampal circuit dynamics. Cell Rep. 43, 114702 (2024).
Kostadinov, D., Beau, M., Blanco-Pozo, M. & Häusser, M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat. Neurosci. 22, 950–962 (2019).
Raymond, J. L. & Medina, J. F. Computational principles of supervised learning in the cerebellum. Annu. Rev. Neurosci. 41, 233–253 (2018).
Li, P. Y. & Roxin, A. Rapid memory encoding in a recurrent network model with behavioral time scale synaptic plasticity. PLoS Comput. Biol. 19, e1011139 (2023).
Wu, Y. & Maass, W. A simple model for behavioral time scale synaptic plasticity (BTSP) provides content addressable memory with binary synapses and one-shot learning. Nat. Commun. 16, 342 (2025).
Yang, Y., Stöckl, C. & Maass, W. A surprising link between cognitive maps, successor-relation based reinforcement learning, and BTSP. Preprint at bioRxiv https://doi.org/10.1101/2025.04.22.650046 (2025).
Yu, C., Wu, Y., Wang, A. & Maass, W. Behavioral time scale synaptic plasticity (BTSP) endows hyperdimensional computing with attractor features. Preprint at bioRxiv https://doi.org/10.1101/2025.05.15.654220 (2025).
Cone, I. & Shouval, H. Z. Behavioral time scale plasticity of place fields: mathematical analysis. Front. Comput. Neurosci. 15, 640235 (2021).
Cone, I., Clopath, C. & Costa, R. P. Credit assignment via behavioral timescale synaptic plasticity: theoretical frameworks. Preprint at bioRxiv https://doi.org/10.1101/2025.06.12.659336 (2025).
Cohen, Y. et al. Recent advances at the interface of neuroscience and artificial neural networks. J. Neurosci. 42, 8514–8523 (2022).
Galloni, A. R. et al. Neuromorphic one-shot learning utilizing a phase-transition material. Proc. Natl. Acad. Sci. USA 121, e2318362121 (2024).
Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).
Sutton, R. S. & Barto, A. G. Reinforcement Learning: an Introduction (MIT Press, 2018).
Gulledge, A. T., Carnevale, N. T. & Stuart, G. J. Electrical advantages of dendritic spines. PLoS ONE 7, e36007 (2012).
Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L. & Magee, J. C. Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491, 599–602 (2012).
Jayant, K. et al. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12, 335–342 (2017).
Sanes, J. & Lichtman, J. Can molecules explain long-term potentiation? Nat. Neurosci. 2, 597–604 (1999).
Li, G., McLaughlin, D. W. & Peskin, C. S. A biochemical description of postsynaptic plasticity—with timescales ranging from milliseconds to seconds. Proc. Natl. Acad. Sci. USA 121, e2311709121 (2024).
Nicoll, R. A. & Schulman, H. Synaptic memory and CAMKII. Physiol. Rev. 103, 240–255 (2023).
Yasuda, R., Hayashi, Y. & Hell, J. W. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat. Rev. Neurosci. 23, 666–682 (2022).
Bayer, K. U. & Giese, K. P. A revised view of the role of CaMKII in learning and memory. Nat. Neurosci. 28, 24–34 (2025).
Jain, A. et al. Dendritic, delayed, stochastic CaMKII activation in behavioural time scale plasticity. Nature 635, 151–159 (2024).
Ma, H. et al. Excitation–transcription coupling, neuronal gene expression and synaptic plasticity. Nat. Rev. Neurosci. 24, 672–692 (2023).
Zent, K. H. & Dell’Acqua, M. L. Synapse-to-nucleus ERK→CREB transcriptional signaling requires dendrite-to-soma Ca2+ propagation mediated by L-type voltage–gated Ca2+ channels. J. Neurosci. 45, e1216242024 (2025).
Woolfrey, K. M. & Dell’Acqua, M. L. Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity. J. Biol. Chem. 290, 28604–28612 (2015).
Benedetti, L. et al. Periodic ER-plasma membrane junctions support long-range Ca2+ signal integration in dendrites. Cell 188, 484–500 (2025).
Caya-Bissonnette, L., Naud, R. & Béïque, J. C. Cellular substrate of eligibility traces. Preprint at bioRxiv https://doi.org/10.1101/2023.06.29.547097 (2023).
Bienenstock, E., Cooper, L. & Munro, P. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).
Izhikevich, E. M. & Desai, N. S. Relating STDP to BCM. Neural Comput. 15, 1511–1523 (2003).
Qian, F. K., Li, G., Lipshutz, D., Romani, S. & Magee, J. Memory traces bias new learning for hippocampal generalization. Preprint at bioRxiv https://doi.org/10.1101/2025.11.24.690297 (2025).
Attinger, A. et al. Environmental novelty modulates rapid cortical plasticity during navigation. Preprint at bioRxiv https://doi.org/10.1101/2025.10.21.683723 (2025).
Yaeger, C. E., Soto-Albors, R. M., Liu, W., Beltramini, A. & Harnett, M. T. Plateau potentials are instructive signals for behavioral timescale synaptic plasticity in the neocortex. Preprint at bioRxiv https://doi.org/10.1101/2025.11.07.687250 (2025).
Xiao, K., Li, Y. Sullivan, B. J., Li, G. & Magee, J. C. Rapid neocortical network modifications via dendritic plateau potential induced plasticity. Preprint at bioRxiv https://doi.org/10.1101/2025.11.19.689338 (2025).
Reuveni, I., Friedman, A., Amitai, Y. & Gutnick, M. Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J. Neurosci. 13, 4609–4621 (1993).
Dudai, A., Doron, M., Segev, I. & London, M. Synaptic input and ACh modulation regulate dendritic Ca2+ spike duration in pyramidal neurons, directly affecting their somatic output. J. Neurosci. 42, 1184–1195 (2021).
Pastorelli, E. et al. Simplified two-compartment neuron with calcium dynamics capturing brain-state specific apical-amplification, -isolation and -drive. Front. Comput. Neurosci. 19, 1566196 (2025).
Larkum, M. E., Wu, J., Duverdin, S. A. & Gidon, A. The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 489, 15–33 (2022).
Makarov, R., Pagkalos, M. & Poirazi, P. Dendrites and efficiency: optimizing performance and resource utilization. Curr. Opin. Neurobiol. 83, 102812 (2023).
Park, P. et al. Dendritic excitations govern back-propagation via a spike-rate accelerometer. Nat. Commun. 16, 1333 (2025).
Augustinaite, S., Kuhn, B., Helm, P. J. & Heggelund, P. NMDA spike/plateau potentials in dendrites of thalamocortical neurons. J. Neurosci. 34, 10892–10905 (2014).
Alaburda, A., Perrier, J. F. & Hounsgaard, J. in Sensorimotor Control of Movement and Posture. Advances in Experimental Medicine and Biology (eds. Gandevia, S. C. et al.) 508 (Springer, 2002).
Du, K. et al. Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc. Natl. Acad. Sci. USA 114, E7612–E7621 (2017).
Oikonomou, K. D., Singh, M. B., Sterjanaj, E. V. & Antic, S. D. Spiny neurons of amygdala, striatum, and cortex use dendritic plateau potentials to detect network UP states. Front. Cell. Neurosci. 8, 292 (2014).
Rinzel, J. & Rall, W. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14, 759–790 (1974).
Spruston, N., Jaffe, D. B. & Johnston, D. Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci. 17, 161–166 (1994).
Grienberger, C., Chen, X. & Konnerth, A. NMDA receptor-dependent multidendrite Ca2+ spikes required for hippocampal burst firing in vivo. Neuron 81, 1274–1281 (2014).
Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).
Milstein, A. D. et al. Inhibitory gating of input comparison in the CA1 microcircuit. Neuron 87, 1274–1289 (2015).
Vaasjo, L. O. et al. Dendritic inhibition terminates plateau potentials in CA1 pyramidal neurons. Preprint at bioRxiv https://doi.org/10.1101/2025.06.05.657434 (2025).
Hoffman, D. A. & Johnston, D. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J. Neurosci. 18, 3521–3528 (1998).
Hoffman, D. A. & Johnston, D. Neuromodulation of dendritic action potentials. J. Neurophysiol. 81, 408–411 (1999).
Giessel, A. J. & Sabatini, B. L. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron 68, 936–947 (2010).
Kis, N. et al. Cholinergic regulation of dendritic Ca2+ spikes controls firing mode of hippocampal CA3 pyramidal neurons. Proc. Natl. Acad. Sci. USA 121, e2321501121 (2024).
Labarrera, C. et al. Adrenergic modulation regulates the dendritic excitability of layer 5 pyramidal neurons in vivo. Cell Rep. 23, 1034–1044 (2018).
Palmer, L., Murayama, M. & Larkum, M. Inhibitory regulation of dendritic activity in vivo. Front. Neural Circuits 6, 26–32 (2012).
Larkum, M. E., Senn, W. & Lüscher, H. -R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14, 1059–1070 (2004).
Doron, G. et al. Perirhinal input to neocortical layer 1 controls learning. Science 370, eaaz3136 (2020).
Takahashi, N., Oertner, T. G., Hegemann, P. & Larkum, M. E. Active cortical dendrites modulate perception. Science 354, 1587–1590 (2016).
Ranganathan, G. N. et al. Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior. Nat. Neurosci. 21, 1583–1590 (2018).
Gilbert, C. D. & Sigman, M. Brain states: top-down influences in sensory processing. Neuron. 54, 677–696 (2007).
Hupe, J. M. et al. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature. 394, 784–787 (1998).
O’Hare, J. K., Wang, J., Shala, M. D., Polleux, F. & Losonczy, A. Distal tuft dendrites predict properties of new hippocampal place fields. Neuron 113, 1969–1982 (2025).
Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical networks. Nat. Rev. Neurosci. 19, 166–180 (2018).
Kaufman, A. M., Geiller, T. & Losonczy, A. A role for the locus coeruleus in hippocampal CA1 place cell reorganization during spatial reward learning. Neuron 105, 1018–1026 (2020).
Acknowledgements
I thank M. Harnett for the pyramidal neuron image in Fig. 1, all members of the Magee lab for useful discussions, R. Chitwood and S. Vaidya for help with the manuscript, and C. Grienberger, A. Losonczy, S. Romani and S. R. Williams for comments on the manuscript. This work was supported by the Howard Hughes Medical Institute and the Cullen Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Neuroscience thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Magee, J.C. Behavioral timescale synaptic plasticity: properties, elements and functions. Nat Neurosci (2026). https://doi.org/10.1038/s41593-026-02214-2
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41593-026-02214-2


