Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Behavioral timescale synaptic plasticity: properties, elements and functions

Abstract

Understanding how brains learn and remember remains among the most important challenges in science. Recent studies in the hippocampus implicate a new form of synaptic plasticity, named behavioral timescale synaptic plasticity (BTSP), in the generation of experience-based learning and memory. BTSP is a strong, bidirectional type of plasticity that affects synaptic weights over many seconds of time. It is induced by single dendritic plateau potentials, as opposed to many action potentials, and is thus capable of producing new place cells in one trial. Plateau potential initiation is controlled, at least in part, by local feedback inhibition and an instructive input from a higher-order brain region that potentially links the plasticity to current experience. The new credit assignment procedure in BTSP provides a nonstandard mechanism for memory storage and retrieval that could mitigate the need for widespread synapse stabilization. In addition, it may allow hippocampal networks both to form memories of specific behavioral episodes and to generalize on the basis of past episodes. Finally, recent BTSP investigations could provide a basis for future explorations into how brains learn and remember, ranging from the systems and cognitive levels down to the basic biochemical building blocks of learning and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Learning and memory in brains.
Fig. 2: PCs, hippocampal adaptive change and BTSP.
Fig. 3: PC stabilization and credit assignment in BTSP.

Similar content being viewed by others

References

  1. Hull, C. L. Principles of Behavior: an Introduction to Behavior Theory (Appleton-Century, 1943).

  2. Hebb, D. The Organization of Behavior (Wiley, 1949).

  3. Marr, D. & Brindley, G. S. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 (1971).

    Article  PubMed  CAS  Google Scholar 

  4. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Martin, S. J. & Morris, R. G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. Gallistel, C. R. & Matzel, L. D. The neuroscience of learning: beyond the Hebbian synapse. Annu. Rev. Psychol. 64, 169–200 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. Gold, A. R. & Glanzman, D. L. The central importance of nuclear mechanisms in the storage of memory. Biochem. Biophys. Res. Commun. 564, 103–113 (2021).

    Article  PubMed  CAS  Google Scholar 

  10. Gershman, S. J. The molecular memory code and synaptic plasticity: a synthesis. Biosystems. 224, 104825 (2023).

    Article  PubMed  CAS  Google Scholar 

  11. Amaral, D. & Lavenex, P. in The Hippocampus Book (eds. Andersen, P. et al.) 37–114 (Oxford Univ. Press, 2007).

  12. Sutton, R. S. & Barto, A. G. Toward a modern theory of adaptive networks: expectation and prediction. Amer. Pysch. Assoc. 88, 135–170 (1981).

    CAS  Google Scholar 

  13. Marblestone, A. H., Wayne, G., Kording, K. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10, 94 (2016).

  14. Richards, B. A. & Lillicrap, T. P. Dendritic solutions to the credit assignment problem. Curr. Opin. Neurobiol. 54, 28–36 (2019).

    Article  PubMed  CAS  Google Scholar 

  15. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).

    Article  PubMed  CAS  Google Scholar 

  16. Malenka, R. C. & Bear, M. LTP and LTD: an embarrassment of riches. Neuron 30, 5–21 (2004).

    Article  Google Scholar 

  17. Nicoll, R. A. A brief history of long-term potentiation. Neuron 93, 281–290 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. Feldman, D. E. The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Song, S. & Abbott, L. F. Cortical development and remapping through spike-timing-dependent plasticity. Neuron 32, 339–350 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. Yao, H. & Dan, Y. Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32, 315–323 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. Butts, D. A. & Kanold, P. O. The applicability of spike time dependent plasticity to development. Front. Synaptic Neurosci. 2, 30 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Rosenblatt, F. Two theorems of statistical separability in the perceptron. In Mechanisation of Thought Processes: Proceedings of a Symposium held at the National Physical Laboratory 1, 421–456 (HM Stationary Office, 1958).

  24. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. in Parallel Distributed Processing: Explorations in the Microstructure of Cognition (eds. Rumelhart, D. E. et al.) 318–362 (MIT Press, 1986).

  25. Turner, R. W., Meyers, D. E., Richardson, T. L. & Barker, J. L. The site of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J. Neurosci. 11, 2270–2280 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Stuart, G. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. Stuart, G. & Häusser, M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13, 703–712 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. Magee, J. C. & Johnston, D. Characterization of single voltage-gated sodium and calcium channels in the apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487, 67–90 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hoffman, D., Magee, J. C., Colbert, C. & Johnston, D. Potassium channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. Magee, J. C. & Johnston, D. A synaptically-controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Magee, J. C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 389, 338–341 (1999).

    Article  Google Scholar 

  35. Magee, J. C. & Carruth, M. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 82, 1895–1901 (1998).

    Article  Google Scholar 

  36. Golding, N. L., Jung, H. Y., Mickus, T. & Spruston, N. Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J. Neurosci. 19, 8789–8798 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. Ariav, G., Polsky, A. & Schiller, J. Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 7750–7758 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Losonczy, A. & Magee, J. C. Integrative properties of radial oblique dendrites in CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  PubMed  CAS  Google Scholar 

  40. Tsay, D., Dudman, J. T. & Siegelbaum, S. A. HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56, 1076–1089 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Davie, J. T., Clark, B. A. & Häusser, M. The origin of the complex spike in cerebellar Purkinje cells. J. Neurosci. 28, 7599–7609 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Xu, N. L. et al. Nonlinear dendritic integration of sensory and motor input produces an object localization signal. Nature 492, 247–251 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Harnett, M. T., Xu, N. L., Magee, J. C. & Williams, S. Potassium channels control the interaction between active dendritic compartments in layer 5 cortical pyramidal neurons. Neuron 79, 516–529 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Harnett, M. T., Magee, J. C. & Williams, S. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal. J. Neurosci. 79, 516–529 (2015).

    Google Scholar 

  45. Williams, S. & Fletcher, L. N. Dendritic substrate for the cholinergic control of neocortical output. Neuron 101, 486–499 (2019).

    Article  PubMed  CAS  Google Scholar 

  46. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).

    Article  PubMed  CAS  Google Scholar 

  47. Steward, O. & Scoville, S. A. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J. Comp. Neurol. 169, 347–370 (1976).

    Article  PubMed  CAS  Google Scholar 

  48. Cauller, L. J., Clancy, B. & Connors, B. W. Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J. Comp. Neurol. 390, 297–310 (1998).

    Article  PubMed  CAS  Google Scholar 

  49. Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Takahashi, H. & Magee, J. C. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62, 102–111 (2009).

    Article  PubMed  CAS  Google Scholar 

  51. Kampa, B., Letzkus, J. & Stuart, G. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. J. Physiol. 574, 283–290 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sjöström, P. J. & Häusser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227–238 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral timescale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Körding, K. P. & König, P. Supervised and unsupervised learning with two sites of synaptic integration. J. Comput. Neurosci. 11, 207–215 (2001).

    Article  PubMed  Google Scholar 

  55. Urbanczik, R. & Senn, W. Learning by the dendritic prediction of somatic spiking. Neuron 81, 521–528 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Payeur, A. et al. Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nat. Neurosci. 24, 1010–1019 (2021.

    Article  PubMed  CAS  Google Scholar 

  57. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Morris, R. G., Garrud, P., Rawlins, J. N. & O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  PubMed  CAS  Google Scholar 

  59. Eichenbaum, H. Still searching for the engram. Learn. Behav. 44, 209–222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 367, eaaw4325 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Squire, L. R. The legacy of patient H.M. for neuroscience. Neuron 61, 6–9 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  PubMed  Google Scholar 

  63. Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sheffield, M., Michael, E. J., Adoff, D. & Dombeck, D. A. Increased prevalence of calcium transients across the dendritic arbor during place field formation. Neuron 96, 490–504 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Grienberger, C. & Magee, J. C. Entorhinal cortex directs learning-related changes in CA1 representations. Nature 611, 554–562 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Dupret, D., O’Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hollup, S. A., Molden, S., Donnett, J. G., Moser, M. B. & Moser, E. I. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci. 21, 1635–1644 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Turi, G. F. et al. Vasoactive intestinal polypeptide-expressing interneurons in the hippocampus support goal-oriented spatial learning. Neuron 101, 1150–1165 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zaremba, J. D. et al. Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion. Nat. Neurosci. 20, 1612–1623 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Pettit, N. L., Yap, E. -L., Greenberg, M. E. & Harvey, C. D. Fos ensembles encode and shape stable spatial maps in the hippocampus. Nature 609, 327–334 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rolotti, S. V. et al. Local feedback inhibition tightly controls rapid formation of hippocampal place fields. Neuron 110, 783–794 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Robinson, N. T. M. et al. Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183, 1586–1599 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Megias, M., Emri, Z., Freund, T. F. & Gulyas, A. I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  PubMed  CAS  Google Scholar 

  75. Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Epsztein, J., Brecht, M. & Lee, A. K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Grienberger, C., Milstein, A. D., Bittner, K. C., Romani, S. & Magee, J. C. Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells. Nat. Neurosci. 20, 417–426 (2017).

    Article  PubMed  CAS  Google Scholar 

  79. Cohen, J. D., Bolstad, M. & Lee, A. K. Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. Elife 6, e23040 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhao, X., Wang, Y., Spruston, N. & Magee, J. C. Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus. Nat. Neurosci. 23, 881–891 (2020).

    Article  PubMed  CAS  Google Scholar 

  81. Milstein, A. D. et al. Bidirectional synaptic plasticity rapidly modifies hippocampal representations. eLife 10, e73046 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zhao, X., Hsu, C. L. & Spruston, N. Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus. Neuron 110, 96–108 (2022).

    Article  PubMed  CAS  Google Scholar 

  83. Xiao, K., Li, Y., Chitwood, R. A. & Magee, J. C. A critical role for CaMKII in behavioral timescale synaptic plasticity in hippocampal CA1 pyramidal neurons. Sci. Adv. 9, eadi3088 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Diamantaki, M. et al. Manipulating hippocampal place cell activity by single-cell stimulation in freely moving mice. Cell Rep. 23, 32–38 (2018).

    Article  PubMed  CAS  Google Scholar 

  85. Fan, L. Z. et al. All optical physiology resolves a synaptic basis for behavioral timescale plasticity. Cell 186, 543–559 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gonzalez, K. C. et al. Synaptic basis of feature selectivity in hippocampal neurons. Nature 637, 1152–1160 (2025).

    Article  PubMed  CAS  Google Scholar 

  87. Priestley, J. B., Bowler, J. C., Rolotti, S. V., Fusi, S. & Losonczy, A. Signatures of rapid plasticity in hippocampal CA1 representations during novel experiences. Neuron 110, 1978–1992 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Geiller, T. et al. Local circuit amplification of spatial selectivity in the hippocampus. Nature 601, 105–109 (2022).

    Article  PubMed  CAS  Google Scholar 

  89. O’Hare, J. K. et al. Compartment-specific tuning of dendritic feature selectivity by intracellular Ca2+ release. Science 375, 1670 (2022).

    Article  Google Scholar 

  90. O’Dell, T. J. Behavioral timescale cooperativity and competitive synaptic interactions regulate the induction of complex spike burst-dependent long-term potentiation. J Neurosci. 42, 2647–2661 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sumegi, M. et al. Diverse calcium dynamics underlie place field formation in hippocampal CA1 pyramidal cells. eLife 13, RP103676 (2024).

    Article  Google Scholar 

  92. Madar, A. D., Jiang, A., Dong, C. & Sheffield, M. E. J. Synaptic plasticity rules driving representational shifting in the hippocampus. Nat. Neurosci. 28, 848–860 (2025).

  93. Qian, F. K., Li, Y. & Magee, J. C. Experience-dependent place cell referencing in hippocampal area CA1. Nat. Neurosci. 28, 1486–1496 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Li, Y., Briguglio, J. J., Romani, S. & Magee, J. C. Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3. Cell 187, 6804–6819 (2024).

    Article  PubMed  CAS  Google Scholar 

  95. Vaidya, S. P., Li, G., Chitwood, R. A., Li, Y. & Magee, J. C. Formation of an expanding memory representation in the hippocampus. Nat. Neurosci. 28, 1510–1518 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Dorian, C. C., Taxidis, J., Arac, A. & Golshani, P. Behavioral timescale synaptic plasticity in the hippocampus creates non-spatial representations during learning and is modulated by entorhinal inputs. Preprint at bioRxiv https://doi.org/10.1101/2024.08.27.609983 (2025).

  97. Bowler, J. C. & Losonczy, A. Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation. Neuron. 111, 4071–4085 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Issa, J. B. et al. Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward. Nat. Neurosci. 27, 536–546 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bengio, Y. Deriving differential target propagation from iterating approximate inverses. Preprint at https://arxiv.org/abs/2007.15139 (2020).

  100. Kawaguchi, Y. & Hama, K. Two subtypes of non-pyramidal cells in rat hippocampal formation identified by intracellular recording and HRP injection. Brain Res. 411, 190–195 (1987).

    Article  PubMed  CAS  Google Scholar 

  101. Leão, R. et al. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat. Neurosci. 15, 1524–1530 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Udakis, M., Claydon, M., Zhu, H. W., Oakes, E. C. & Mellor, J. R. Hippocampal OLM interneurons regulate CA1 place cell plasticity and remapping. Nat. Commun. 16, 9912 (2025).

  104. Neubrandt, M., Lenkey, N. & Vervaeke, K. VIP interneurons control hippocampal place cell remapping through transient disinhibition in novel environments. Preprint at bioRxiv https://doi.org/10.1101/2025.02.01.636072 (2025)

  105. Campbell, E. P., Martin, L., Magee, J. C. & Grienberger, C. Dendrite-targeting OLM interneurons regulate the formation of experience-dependent CA1 place cell representations. Preprint at bioRxiv https://doi.org/10.64898/2025.12.21.695825

  106. Amit, D. J. & Fusi, S. Learning in neural networks with material synapses. Neural Comput. 6, 957–982 (1994).

    Article  Google Scholar 

  107. Fusi, S. Memory capacity of neuronal network models. Preprint at https://arxiv.org/abs/2108.07839v2 (2021).

  108. French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999).

    Article  PubMed  CAS  Google Scholar 

  109. Mermillod, M., Bugaiska, A. & Bonin, P. The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects. Front. Psychol. 4, 504 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zemla, R., Moore, J. J., Hopkins, M. D. & Basu, J. Task-selective place cells show behaviorally driven dynamics during learning and stability during memory recall. Cell Rep. 41, 111700 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hainmueller, T. & Bartos, M. Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature 558, 292–296 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lee, J. S. et al. The statistical structure of the hippocampal code for space as a function of time, context and value. Cell 183, 620–635 (2020).

    Article  PubMed  CAS  Google Scholar 

  114. Grosmark, A. D., Sparks, F. T., Davis, M. J. & Losonczy, A. Reactivation predicts the consolidation of unbiased long-term cognitive maps. Nat. Neurosci. 24, 1574–1585 (2021).

    Article  PubMed  CAS  Google Scholar 

  115. Gonzalez, W. G., Zhang, H., Harutyunyan, A. & Lois, C. Persistence of neuronal representations through time and damage in the hippocampus. Science 365, 821–825 (2019).

    Article  PubMed  CAS  Google Scholar 

  116. Rubin, A. et al. Hippocampal ensemble dynamics timestamp events in long-term memory. elife 4, e12247 (2015).

  117. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S. Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019).

    Article  PubMed  Google Scholar 

  118. Fusi, S., Drew, P. J. & Abbott, L. A. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005).

    Article  PubMed  CAS  Google Scholar 

  119. Benna, M. & Fusi, S. Computational principles of synaptic memory consolidation. Nat. Neurosci. 19, 1697–1706 (2016).

    Article  PubMed  CAS  Google Scholar 

  120. Lahiri, S. & Ganguli, S. in Advances in Neural Information Processing Systems 26 (eds. Burges, C. J. et al.) 1034–1042 (Curran Associates, 2015).

  121. McKenzie, S. et al. Preexisting hippocampal network dynamics constrain optogenetically induced place fields. Neuron 109, 1040–1054 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zheng, Z. S. et al. Perpetual step-like restructuring of hippocampal circuit dynamics. Cell Rep. 43, 114702 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kostadinov, D., Beau, M., Blanco-Pozo, M. & Häusser, M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat. Neurosci. 22, 950–962 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Raymond, J. L. & Medina, J. F. Computational principles of supervised learning in the cerebellum. Annu. Rev. Neurosci. 41, 233–253 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Li, P. Y. & Roxin, A. Rapid memory encoding in a recurrent network model with behavioral time scale synaptic plasticity. PLoS Comput. Biol. 19, e1011139 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wu, Y. & Maass, W. A simple model for behavioral time scale synaptic plasticity (BTSP) provides content addressable memory with binary synapses and one-shot learning. Nat. Commun. 16, 342 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Yang, Y., Stöckl, C. & Maass, W. A surprising link between cognitive maps, successor-relation based reinforcement learning, and BTSP. Preprint at bioRxiv https://doi.org/10.1101/2025.04.22.650046 (2025).

  128. Yu, C., Wu, Y., Wang, A. & Maass, W. Behavioral time scale synaptic plasticity (BTSP) endows hyperdimensional computing with attractor features. Preprint at bioRxiv https://doi.org/10.1101/2025.05.15.654220 (2025).

  129. Cone, I. & Shouval, H. Z. Behavioral time scale plasticity of place fields: mathematical analysis. Front. Comput. Neurosci. 15, 640235 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cone, I., Clopath, C. & Costa, R. P. Credit assignment via behavioral timescale synaptic plasticity: theoretical frameworks. Preprint at bioRxiv https://doi.org/10.1101/2025.06.12.659336 (2025).

  131. Cohen, Y. et al. Recent advances at the interface of neuroscience and artificial neural networks. J. Neurosci. 42, 8514–8523 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Galloni, A. R. et al. Neuromorphic one-shot learning utilizing a phase-transition material. Proc. Natl. Acad. Sci. USA 121, e2318362121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).

    Article  PubMed  CAS  Google Scholar 

  134. Sutton, R. S. & Barto, A. G. Reinforcement Learning: an Introduction (MIT Press, 2018).

  135. Gulledge, A. T., Carnevale, N. T. & Stuart, G. J. Electrical advantages of dendritic spines. PLoS ONE 7, e36007 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L. & Magee, J. C. Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491, 599–602 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Jayant, K. et al. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12, 335–342 (2017).

    Article  PubMed  CAS  Google Scholar 

  138. Sanes, J. & Lichtman, J. Can molecules explain long-term potentiation? Nat. Neurosci. 2, 597–604 (1999).

    Article  PubMed  CAS  Google Scholar 

  139. Li, G., McLaughlin, D. W. & Peskin, C. S. A biochemical description of postsynaptic plasticity—with timescales ranging from milliseconds to seconds. Proc. Natl. Acad. Sci. USA 121, e2311709121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Nicoll, R. A. & Schulman, H. Synaptic memory and CAMKII. Physiol. Rev. 103, 240–255 (2023).

    Article  Google Scholar 

  141. Yasuda, R., Hayashi, Y. & Hell, J. W. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat. Rev. Neurosci. 23, 666–682 (2022).

    Article  PubMed  CAS  Google Scholar 

  142. Bayer, K. U. & Giese, K. P. A revised view of the role of CaMKII in learning and memory. Nat. Neurosci. 28, 24–34 (2025).

    Article  PubMed  CAS  Google Scholar 

  143. Jain, A. et al. Dendritic, delayed, stochastic CaMKII activation in behavioural time scale plasticity. Nature 635, 151–159 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Ma, H. et al. Excitation–transcription coupling, neuronal gene expression and synaptic plasticity. Nat. Rev. Neurosci. 24, 672–692 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Zent, K. H. & Dell’Acqua, M. L. Synapse-to-nucleus ERK→CREB transcriptional signaling requires dendrite-to-soma Ca2+ propagation mediated by L-type voltage–gated Ca2+ channels. J. Neurosci. 45, e1216242024 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Woolfrey, K. M. & Dell’Acqua, M. L. Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity. J. Biol. Chem. 290, 28604–28612 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Benedetti, L. et al. Periodic ER-plasma membrane junctions support long-range Ca2+ signal integration in dendrites. Cell 188, 484–500 (2025).

    Article  PubMed  CAS  Google Scholar 

  148. Caya-Bissonnette, L., Naud, R. & Béïque, J. C. Cellular substrate of eligibility traces. Preprint at bioRxiv https://doi.org/10.1101/2023.06.29.547097 (2023).

  149. Bienenstock, E., Cooper, L. & Munro, P. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Izhikevich, E. M. & Desai, N. S. Relating STDP to BCM. Neural Comput. 15, 1511–1523 (2003).

    Article  PubMed  Google Scholar 

  151. Qian, F. K., Li, G., Lipshutz, D., Romani, S. & Magee, J. Memory traces bias new learning for hippocampal generalization. Preprint at bioRxiv https://doi.org/10.1101/2025.11.24.690297 (2025).

  152. Attinger, A. et al. Environmental novelty modulates rapid cortical plasticity during navigation. Preprint at bioRxiv https://doi.org/10.1101/2025.10.21.683723 (2025).

  153. Yaeger, C. E., Soto-Albors, R. M., Liu, W., Beltramini, A. & Harnett, M. T. Plateau potentials are instructive signals for behavioral timescale synaptic plasticity in the neocortex. Preprint at bioRxiv https://doi.org/10.1101/2025.11.07.687250 (2025).

  154. Xiao, K., Li, Y. Sullivan, B. J., Li, G. & Magee, J. C. Rapid neocortical network modifications via dendritic plateau potential induced plasticity. Preprint at bioRxiv https://doi.org/10.1101/2025.11.19.689338 (2025).

  155. Reuveni, I., Friedman, A., Amitai, Y. & Gutnick, M. Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J. Neurosci. 13, 4609–4621 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Dudai, A., Doron, M., Segev, I. & London, M. Synaptic input and ACh modulation regulate dendritic Ca2+ spike duration in pyramidal neurons, directly affecting their somatic output. J. Neurosci. 42, 1184–1195 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Pastorelli, E. et al. Simplified two-compartment neuron with calcium dynamics capturing brain-state specific apical-amplification, -isolation and -drive. Front. Comput. Neurosci. 19, 1566196 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Larkum, M. E., Wu, J., Duverdin, S. A. & Gidon, A. The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 489, 15–33 (2022).

    Article  PubMed  CAS  Google Scholar 

  159. Makarov, R., Pagkalos, M. & Poirazi, P. Dendrites and efficiency: optimizing performance and resource utilization. Curr. Opin. Neurobiol. 83, 102812 (2023).

    Article  PubMed  CAS  Google Scholar 

  160. Park, P. et al. Dendritic excitations govern back-propagation via a spike-rate accelerometer. Nat. Commun. 16, 1333 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Augustinaite, S., Kuhn, B., Helm, P. J. & Heggelund, P. NMDA spike/plateau potentials in dendrites of thalamocortical neurons. J. Neurosci. 34, 10892–10905 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Alaburda, A., Perrier, J. F. & Hounsgaard, J. in Sensorimotor Control of Movement and Posture. Advances in Experimental Medicine and Biology (eds. Gandevia, S. C. et al.) 508 (Springer, 2002).

  163. Du, K. et al. Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc. Natl. Acad. Sci. USA 114, E7612–E7621 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Oikonomou, K. D., Singh, M. B., Sterjanaj, E. V. & Antic, S. D. Spiny neurons of amygdala, striatum, and cortex use dendritic plateau potentials to detect network UP states. Front. Cell. Neurosci. 8, 292 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Rinzel, J. & Rall, W. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14, 759–790 (1974).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Spruston, N., Jaffe, D. B. & Johnston, D. Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci. 17, 161–166 (1994).

    Article  PubMed  CAS  Google Scholar 

  167. Grienberger, C., Chen, X. & Konnerth, A. NMDA receptor-dependent multidendrite Ca2+ spikes required for hippocampal burst firing in vivo. Neuron 81, 1274–1281 (2014).

    Article  PubMed  CAS  Google Scholar 

  168. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

    Article  PubMed  CAS  Google Scholar 

  169. Milstein, A. D. et al. Inhibitory gating of input comparison in the CA1 microcircuit. Neuron 87, 1274–1289 (2015).

    Article  PubMed  CAS  Google Scholar 

  170. Vaasjo, L. O. et al. Dendritic inhibition terminates plateau potentials in CA1 pyramidal neurons. Preprint at bioRxiv https://doi.org/10.1101/2025.06.05.657434 (2025).

  171. Hoffman, D. A. & Johnston, D. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J. Neurosci. 18, 3521–3528 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Hoffman, D. A. & Johnston, D. Neuromodulation of dendritic action potentials. J. Neurophysiol. 81, 408–411 (1999).

    Article  PubMed  CAS  Google Scholar 

  173. Giessel, A. J. & Sabatini, B. L. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron 68, 936–947 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Kis, N. et al. Cholinergic regulation of dendritic Ca2+ spikes controls firing mode of hippocampal CA3 pyramidal neurons. Proc. Natl. Acad. Sci. USA 121, e2321501121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Labarrera, C. et al. Adrenergic modulation regulates the dendritic excitability of layer 5 pyramidal neurons in vivo. Cell Rep. 23, 1034–1044 (2018).

    Article  PubMed  CAS  Google Scholar 

  176. Palmer, L., Murayama, M. & Larkum, M. Inhibitory regulation of dendritic activity in vivo. Front. Neural Circuits 6, 26–32 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Larkum, M. E., Senn, W. & Lüscher, H. -R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14, 1059–1070 (2004).

    Article  PubMed  Google Scholar 

  178. Doron, G. et al. Perirhinal input to neocortical layer 1 controls learning. Science 370, eaaz3136 (2020).

  179. Takahashi, N., Oertner, T. G., Hegemann, P. & Larkum, M. E. Active cortical dendrites modulate perception. Science 354, 1587–1590 (2016).

    Article  PubMed  CAS  Google Scholar 

  180. Ranganathan, G. N. et al. Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior. Nat. Neurosci. 21, 1583–1590 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Gilbert, C. D. & Sigman, M. Brain states: top-down influences in sensory processing. Neuron. 54, 677–696 (2007).

    Article  PubMed  CAS  Google Scholar 

  182. Hupe, J. M. et al. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature. 394, 784–787 (1998).

    Article  PubMed  CAS  Google Scholar 

  183. O’Hare, J. K., Wang, J., Shala, M. D., Polleux, F. & Losonczy, A. Distal tuft dendrites predict properties of new hippocampal place fields. Neuron 113, 1969–1982 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical networks. Nat. Rev. Neurosci. 19, 166–180 (2018).

    Article  PubMed  CAS  Google Scholar 

  185. Kaufman, A. M., Geiller, T. & Losonczy, A. A role for the locus coeruleus in hippocampal CA1 place cell reorganization during spatial reward learning. Neuron 105, 1018–1026 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I thank M. Harnett for the pyramidal neuron image in Fig. 1, all members of the Magee lab for useful discussions, R. Chitwood and S. Vaidya for help with the manuscript, and C. Grienberger, A. Losonczy, S. Romani and S. R. Williams for comments on the manuscript. This work was supported by the Howard Hughes Medical Institute and the Cullen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Magee.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magee, J.C. Behavioral timescale synaptic plasticity: properties, elements and functions. Nat Neurosci (2026). https://doi.org/10.1038/s41593-026-02214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41593-026-02214-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing