Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The importance of physiological and disease contexts in capturing mRNA modifications

An Author Correction to this article was published on 11 July 2025

This article has been updated

Abstract

The variety of modifications decorating various RNA species has prompted researchers to study messenger RNA (mRNA) modifications that are likely to have, like N6-methyladenosine (m6A), important biological functions. Yet tackling these modifications has proved more complicated than anticipated. In this Perspective, we discuss two major obstacles to progress in epitranscriptomic research: the low abundance of most mRNA modification and the nonspecificity of many mRNA modifiers. We then shift our focus to the removal of mRNA modifications and their upstream regulation, emphasizing the context-dependent nature of epitranscriptomic regulation. We illustrate how specific modifications, such as N1-methyladenosine (m1A) and pseudouridine, are enriched in distinct environments, most notably within mitochondria and in certain physiopathological conditions. By focusing on biological settings in which non-m6A modifications are more abundant, we could deepen our understanding of their precise roles in gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major challenges in characterizing mRNA modifications.
Fig. 2: The roles of context in regulating modification machineries.
Fig. 3: The interplay between m6A and chromatin.

Similar content being viewed by others

Change history

References

  1. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Sharma, S. & Lafontaine, D. L. J. ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem. Sci. 40, 560–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, H., Li, K., Liu, C. & Yi, C. Regulation and functions of non-m6A mRNA modifications. Nat. Rev. Mol. Cell Biol. 24, 714–731 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Sommer, S., Lavi, U. & Darnell, J. E. The absolute frequency of labeled N-6-methyladenosine in HeLa cell messenger RNA decreases with label time. J. Mol. Biol. 124, 487–499 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications. Nat. Rev. Genet. 25, 104–122 (2023).

  10. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  Google Scholar 

  15. Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kennedy, E. M. et al. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 19, 675–685 (2016).

    CAS  Google Scholar 

  17. Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ross, R., Cao, X., Yu, N. & Limbach, P. A. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods 107, 73–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Legrand, C. et al. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 27, 1589–1596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12, 311–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Dominissini, D. et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lan, J. et al. Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nat. Commun. 11, 4956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delatte, B. et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351, 282–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Safra, M. et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551, 251–255 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Sas-Chen, A. et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583, 638–643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anreiter, I., Mir, Q., Simpson, J. T., Janga, S. C. & Soller, M. New twists in detecting mRNA modification dynamics. Trends Biotechnol. 39, 72–89 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Warda, A. S. et al. Human METTL16 is a N6‐methyladenosine (m6A) methyltransferase that targets pre‐mRNAs and various non‐coding RNAs. EMBO Rep. 18, 2004–2014 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goh, Y. T., Koh, C. W. Q., Sim, D. Y., Roca, X. & Goh, W. S. S. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 48, 9250–9261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ren, W. et al. Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA. Nat. Commun. 10, 5042 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boulias, K. et al. Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol. Cell 75, 631–643 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, X. et al. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, T., Chen, W., Liu, J., Gu, N. & Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26, 380–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Malbec, L. et al. Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Res. 29, 927–941 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, L.-S. et al. Transcriptome-wide mapping of internal N7-methylguanosine methylome in mammalian mRNA. Mol. Cell 74, 1304–1316 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carlile, T. M. et al. mRNA structure determines modification by pseudouridine synthase 1. Nat. Chem. Biol. 15, 966–974 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharma, S. et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 43, 2242–2258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alexandrov, A., Martzen, M. R. & Phizicky, E. M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, 1253–1266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, X. et al. 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, X. et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21, 978–990 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Dai, X., Wang, T., Gonzalez, G. & Wang, Y. Identification of YTH domain-containing proteins as the readers for N1-methyladenosine in RNA. Anal. Chem. 90, 6380–6384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seo, K. W. & Kleiner, R. E. YTHDF2 recognition of N1-methyladenosine (m1A)-modified RNA is associated with transcript destabilization. ACS Chem. Biol. 15, 132–139 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Kauffman, K. J. et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 109, 78–87 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi, H., Wei, J. & He, C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell 74, 640–650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Daoud, H. et al. Identification of a pathogenic FTO mutation by next-generation sequencing in a newborn with growth retardation and developmental delay. J. Med. Genet. 53, 200–207 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Merkestein, M. et al. FTO influences adipogenesis by regulating mitotic clonal expansion. Nat. Commun. 6, 6792 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Fu, L. et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc. 136, 11582–11585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Z. et al. m6A deposition is regulated by PRMT1-mediated arginine methylation of METTL14 in its disordered C-terminal region. EMBO J. 40, e106309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, C. et al. METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA–RNA hybrid accumulation. Mol. Cell 79, 425–442 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, L.-H. et al. The SUMOylated METTL8 induces R-loop and tumorigenesis via m3C. iScience 23, 100968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, X. et al. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res. 46, 9601–9616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, J. et al. Landscape and regulation of m6A and m6Am methylome across human and mouse tissues. Mol. Cell 77, 426–440 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Guallar, D. et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nat. Genet. 50, 443–451 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, J. et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, Y. et al. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat. Neurosci. 21, 195–206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang, H. et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567, 414–419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, Y. et al. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat. Genet. 52, 870–877 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Chelmicki, T. et al. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 591, 312–316 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, J. et al. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature 591, 322–326 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, W. et al. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591, 317–321 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Antonicka, H. et al. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 18, 28–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Rebelo-Guiomar, P., Powell, C. A., Van Haute, L. & Minczuk, M. The mammalian mitochondrial epitranscriptome. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 429–446 (2019).

    Article  CAS  Google Scholar 

  74. Zhang, M., Zhai, Y., Zhang, S., Dai, X. & Li, Z. Roles of N6-methyladenosine (m6A) in stem cell fate decisions and early embryonic development in mammals. Front. Cell Dev. Biol. 8, 782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shulman, Z. & Stern-Ginossar, N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat. Immunol. 21, 501–512 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Livneh, I., Moshitch-Moshkovitz, S., Amariglio, N., Rechavi, G. & Dominissini, D. The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nat. Rev. Neurosci. 21, 36–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, C. et al. The role of m6A modification in physiology and disease. Cell Death Dis. 11, 960 (2020).

    CAS  Google Scholar 

  78. Zhao, F. et al. METTL3-dependent RNA m6A dysregulation contributes to neurodegeneration in Alzheimer’s disease through aberrant cell cycle events. Mol. Neurodegener. 16, 70 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen, X. et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem. Neurosci. 10, 2355–2363 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Li, L. et al. Prognostic role of METTL1 in glioma. Cancer Cell Int. 21, 633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koike, K. et al. Anti-tumor effect of AlkB homolog 3 knockdown in hormone- independent prostate cancer cells. Curr. Cancer Drug Targets 12, 847–856 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Yamato, I. et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis. Cancer Res. 72, 4829–4839 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Hotta, K. et al. Clinical significance and therapeutic potential of prostate cancer antigen-1/ALKBH3 in human renal cell carcinoma. Oncol. Rep. 34, 648–654 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Li, Y. et al. Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett. 430, 57–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Shen, Q. et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 554, 123–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Esteve-Puig, R. et al. Epigenetic loss of m1A RNA demethylase ALKBH3 in Hodgkin lymphoma targets collagen, conferring poor clinical outcome. Blood 137, 994–999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Esteve-Puig, R., Bueno-Costa, A. & Esteller, M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett. 474, 127–137 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Bohnsack, M. T. & Sloan, K. E. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell. Mol. Life Sci. 75, 241–260 (2018).

    Article  CAS  Google Scholar 

  90. Cully, M. Chemical inhibitors make their RNA epigenetic mark. Nat. Rev. Drug Discov. 18, 892–894 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Berdasco, M. & Esteller, M. Towards a druggable epitranscriptome: compounds that target RNA modifications in cancer. Br. J. Pharmacol. 179, 2868–2889 (2021).

    Article  PubMed  Google Scholar 

  92. Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Su, R. et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 38, 79–96 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, Y. et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 33, 1221–1233 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Huang, Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35, 677–691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Woo, H. H. & Chambers, S. K. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 35–46 (2019).

    Article  CAS  Google Scholar 

  97. Hensel, J. et al. Patient mutation directed shRNA screen uncovers novel bladder tumor growth suppressors. Mol. Cancer Res. 13, 1306–1315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. de Brouwer, A. P. M. et al. Variants in PUS7 cause intellectual disability with speech delay, microcephaly, short stature, and aggressive behavior. Am. J. Hum. Genet. 103, 1045–1052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Shaheen, R. et al. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum. Genet. 138, 231–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Akichika, S. et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363, eaav0080 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Xu, L. et al. Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. J. Biol. Chem. 292, 14695–14703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu, C. et al. Interplay of m6A and H3K27 trimethylation restrains inflammation during bacterial infection. Sci. Adv. 6, eaba0647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work could not be cited owing to space constraints. A.P. is supported by the FNRS, the ULB Foundation and the Association Jules Bordet. J.J. is a Chercheur Qualifiée supported by the FNRS. F.F. is a ULB professor, and his work is funded by grants from the FNRS and Télévie, the “Action de Recherche Concertée” (ARC) (AUWB-2018-2023 ULB-No 7), a Walloon Region grant (Win2Wal), FNRS Welbio grants (FNRS-WELBIO-CR-2017A-04 and FNRS-WELBIO-CR-2019A-04R), the FWO and FNRS under the Excellence of Science (EOS O.0020.22/RG3483) programme, the ULB Foundation, the Belgian Foundation against Cancer (FCC 2016-086 FAF-F/2016/872), and H2020-MSCA-ITN ROPES. Supplementary Fig. 1 was created in BioRender. Primac, I. (2025) https://biorender.com/n99g078.

Author information

Authors and Affiliations

Authors

Contributions

A.P. researched data for the Perspective and prepared the figures. A.P., J.J. and F.F. wrote the manuscript.

Corresponding author

Correspondence to François Fuks.

Ethics declarations

Competing interests

F.F. is a cofounder of EPICS Therapeutics. A.P. and J.J. declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penning, A., Jeschke, J. & Fuks, F. The importance of physiological and disease contexts in capturing mRNA modifications. Nat Struct Mol Biol 32, 780–789 (2025). https://doi.org/10.1038/s41594-025-01548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01548-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing