Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computation and deep-learning-driven advances in CRISPR genome editing

Abstract

Genome editing with CRISPR–Cas systems is revolutionizing medicine, molecular biology and biotechnology. In this Review, we discuss the contributions of deep learning-based structure prediction algorithms, physics-based simulations, neural networks, graph neural networks and generative models, including diffusion and large language models, in engineering and optimizing CRISPR systems and in understanding their mechanistic basis. We highlight the challenges and limitations to the transformative effects of computational modeling and tools in the context of the development of programmable genome editors for biomedicine and biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NNs for genome editing.
Fig. 2: GNN framework for modeling TnsC filament dynamics.
Fig. 3: Design of Cas13a variants through network analysis and AI.
Fig. 4: Deep learning approaches for the design of gene-editing systems.

Similar content being viewed by others

References

  1. Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002).

    CAS  PubMed  Google Scholar 

  2. van den Bedem, H. & Fraser, J. S. Integrative, dynamic structural biology at atomic resolution—it’s about time. Nat. Methods 12, 307–318 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, J. Y., Pausch, P. & Doudna, J. A. Structural biology of CRISPR–Cas immunity and genome editing enzymes. Nat. Rev. Microbiol. 11, 641–656 (2022).

    Google Scholar 

  5. Sinha, S., Pindi, C., Ahsan, M., Arantes, P. R. & Palermo, G. Machines on genes through the computational microscope. J. Chem. Theory Comput. 19, 1945–1964 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Palermo, G., Miao, Y., Walker, R. C., Jinek, M. & McCammon, J. A. Striking plasticity of CRISPR–Cas9 and key role of non-target DNA, as revealed by molecular simulations. ACS Cent. Sci. 2, 756–763 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Palermo, G., Miao, Y., Walker, R. C., Jinek, M. & McCammon, J. A. CRISPR–Cas9 conformational activation as elucidated from enhanced molecular simulations. Proc. Natl Acad. Sci. USA 114, 7260–7265 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Saha, A. et al. An alpha-helical lid guides the target DNA toward catalysis in CRISPR–Cas12a. Nat. Commun. 15, 1473 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zuo, Z. et al. Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain. eLife 8, e46500 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Nierzwicki et al. Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR–Cas9. Nat. Catal. 5, 912–922 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Casalino, L., Nierzwicki, Ł, Jinek, M. & Palermo, G. Catalytic mechanism of non-target DNA cleavage in CRISPR–Cas9 revealed by ab initio molecular dynamics. ACS Catal. 10, 13596–13605 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Van, R. et al. Exploring CRISPR–Cas9 HNH-domain-catalyzed DNA cleavage using accelerated quantum mechanical molecular mechanical free energy simulation. Biochemistry 64, 289–299 (2024).

    PubMed  PubMed Central  Google Scholar 

  13. Yoon, H., Zhao, L. N. & Warshel, A. Exploring the catalytic mechanism of Cas9 using information inferred from endonuclease VII. ACS Catal. 9, 1329–1336 (2019).

    CAS  PubMed  Google Scholar 

  14. Skeens, E. et al. High-fidelity, hyper-accurate, and evolved mutants rewire atomic level communication in CRISPR–Cas9. Sci. Adv. 10, eadl1045 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nierzwicki, L. et al. Enhanced specificity mutations perturb allosteric signaling in CRISPR–Cas9. eLife 10, e73601 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Babu, K. et al. Bridge helix of Cas9 modulates target DNA cleavage and mismatch tolerance. Biochemistry 58, 1905–1917 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sinha, S. et al. Unveiling the RNA-mediated allosteric activation discloses functional hotspots in CRISPR–as13a. Nucleic Acids Res. 52, 906–920 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Molina Vargas, A. M. et al. New design strategies for ultra-specific CRISPR–Cas13a-based RNA detection with single-nucleotide mismatch sensitivity. Nucleic Acids Res. 52, 921–939 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Iturralde, A. B., Weller, C. A., Giovanetti, S. M. & Sadhu, M. J. Comprehensive deletion scan of anti-CRISPR AcrIIA4 reveals essential and dispensable domains for Cas9 inhibition. Proc. Natl Acad. Sci. USA 121, e2413743121 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang, J. et al. Structural investigation of the anti-CRISPR protein AcrIE7. Proteins 93, 1645–1656 (2025).

    CAS  PubMed  Google Scholar 

  22. Belato, H. B. et al. Structural and dynamic insights into the HNH nuclease of divergent Cas9 species. J. Struct. Biol. 214, 107814 (2022).

    CAS  PubMed  Google Scholar 

  23. Halpin-Healy, T. S., Klompe, S. E., Sternberg, S. H. & Fernández, I. S. Structural basis of DNA targeting by a transposon-encoded CRISPR–Cas system. Nature 577, 271–274 (2020).

    CAS  PubMed  Google Scholar 

  24. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Patel, A. C., Sinha, S., Arantes, P. R. & Palermo, G. Unveiling Cas8 dynamics and regulation within a transposon-encoded Cascade–TniQ complex. Proc. Natl Acad. Sci. USA 122, e2422895122 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, F. et al. A strategy for Cas13 miniaturization based on the structure and AlphaFold. Nat. Commun. 14, 5545 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoon, P. H. et al. Structure-guided discovery of ancestral CRISPR–Cas13 ribonucleases. Science 385, 538–543 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, 439–444 (2022).

    Google Scholar 

  29. Holm, L. Benchmarking fold detection by DaliLite v.5. Bioinformatics 35, 5326–5327 (2019).

    CAS  PubMed  Google Scholar 

  30. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pan, L. et al. Optimization of CRISPR/Cas12f1 guide RNAs using AlphaFold 3 for enhanced nucleic acid detection. Microchem. J. 212, 113194 (2025).

    CAS  Google Scholar 

  32. Schneider, B. et al. When will RNA get its AlphaFold moment? Nucleic Acids Res. 51, 9522–9532 (2023).

    PubMed  PubMed Central  Google Scholar 

  33. McDonnell, R. T., Henderson, A. N. & Elcock, A. H. Structure prediction of large RNAs with AlphaFold3 highlights its capabilities and limitations. J. Mol. Biol. 436, 168816 (2024).

    CAS  PubMed  Google Scholar 

  34. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  PubMed  Google Scholar 

  35. Gallego, V. & Ríos Insua, D. Current advances in neural networks. Annu. Rev. Stat. Appl. 9, 197–222 (2022).

    Google Scholar 

  36. Alzubaidi, L. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 53 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. Jurtz, V. I. et al. An introduction to deep learning on biological sequence data: examples and solutions. Bioinformatics 33, 3685–3690 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chuai, G. et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Lin, J., Zhang, Z., Zhang, S., Chen, J. & Wong, K. CRISPR-Net: a recurrent convolutional network quantifies CRISPR off-target activities with mismatches and indels. Adv. Sci. 7, 1903562 (2020).

    CAS  Google Scholar 

  41. Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue, L., Tang, B., Chen, W. & Luo, J. Prediction of CRISPR sgRNA activity using a deep convolutional neural network. J. Chem. Inf. Model. 59, 615–624 (2019).

    CAS  PubMed  Google Scholar 

  43. Wang, D. et al. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nat. Commun. 10, 4284 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Xiao, L.-M., Wan, Y.-Q. & Jiang, Z.-R. AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity. BMC Bioinformatics 22, 589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, C., Zou, Q., Li, J. & Feng, H. Prediction of CRISPR–Cas9 on-target activity based on a hybrid neural network. Comput. Struct. Biotechnol. J. 27, 2098–2106 (2025).

    PubMed  PubMed Central  Google Scholar 

  46. Anthon, C., Corsi, G. I. & Gorodkin, J. CRISPRon/off: CRISPR/Cas9 on- and off-target gRNA design. Bioinformatics 38, 5437–5439 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun, J., Guo, J. & Liu, J. CRISPR-M: predicting sgRNA off-target effect using a multi-view deep learning network. PLoS Comput. Biol. 20, e1011972 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, Z., Lamson, A. R., Shelley, M. & Troyanskaya, O. Interpretable neural architecture search and transfer learning for understanding CRISPR–Cas9 off-target enzymatic reactions. Nat. Comput. Sci. 3, 1056–1066 (2023).

    CAS  PubMed  Google Scholar 

  49. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    CAS  PubMed  Google Scholar 

  50. Park, J. & Kim, H. K. Prediction of base editing efficiencies and outcomes using DeepABE and DeepCBE. Methods Mol. Biol. 2606, 23–32 (2023).

    CAS  PubMed  Google Scholar 

  51. Kim, N. et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. 42, 484–497 (2024).

    CAS  PubMed  Google Scholar 

  52. Silverstein, R. A. et al. Custom CRISPR–Cas9 PAM variants via scalable engineering and machine learning. Nature 643, 539–550 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vieyra, F., Pindi, C., Lisi, G. P., Morzan, U. N., & Palermo, G. Design rules for expanding PAM compatibility in CRISPR-Cas9 from the VQR, VRER and EQR variants. J. Phys. Chem. B 129, 11949–11958 (2025).

    CAS  PubMed  Google Scholar 

  54. Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Wang, Y., Li, Z. & Farimani, A. B. Graph neural networks for molecules. Preprint at arXiv https://doi.org/10.48550/arXiv.2209.05582 (2022).

  56. Veličković, P. Everything is connected: graph neural networks. Curr. Opin. Struct. Biol. 79, 102538 (2023).

    PubMed  Google Scholar 

  57. Park, J.-U. et al. Structures of the holo CRISPR RNA-guided transposon integration complex. Nature 613, 775–782 (2023).

    CAS  PubMed  Google Scholar 

  58. Veličković, P. et al. Graph attention networks. Preprint at arXiv https://doi.org/10.48550/arXiv.1710.10903 (2017).

  59. Pindi, C., Ahsan, M., Sinha, S. & Palermo, G. Graph attention neural networks reveal TnsC filament assembly in a CRISPR-associated transposon. Preprint at bioRxiv https://doi.org/10.1101/2025.06.17.659969 (2025).

  60. Patel, A. C., Sinha, S. & Palermo, G. Graph theory approaches for molecular dynamics simulations. Q. Rev. Biophys. 57, e15 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, H., Jian, Y., Zeng, C. & Zhao, Y. RNA–protein interaction prediction using network-guided deep learning. Commun. Biol. 8, 247 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiang, Y., Li, B., Xiong, J. & Liu, X. Graph-CRISPR: a gene editing efficiency prediction model based on graph neural network with integrated sequence and secondary structure feature extraction. Brief. Bioinform. 26, bbaf410 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, G., Hou, L., Li, Z., Xie, B. & Liu, Y. A new strategy for Cas protein recognition based on graph neural networks and SMILES encoding. Sci. Rep. 15, 15236 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Knott, G. J. et al. Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme. Nat. Struct. Mol. Biol. 24, 825–833 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, L. et al. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121–134 (2017).

    CAS  PubMed  Google Scholar 

  68. Tambe, A., East-Seletsky, A., Knott, G. J., Doudna, J. A. & O’Connell, M. R. RNA binding and HEPN-nuclease activation are decoupled in CRISPR–Cas13a. Cell Rep. 24, 1025–1036 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fei, H. et al. Advancing protein evolution with inverse folding models integrating structural and evolutionary constraints. Cell 188, 4674–4692 (2025).

    CAS  PubMed  Google Scholar 

  70. Dauparas, J. et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsu, C. et al. Learning inverse folding from millions of predicted structures. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 8946–8970 (PMLR, 2022).

  72. Ruffolo, J. A. & Madani, A. Designing proteins with language models. Nat. Biotechnol. 42, 200–202 (2024).

    CAS  PubMed  Google Scholar 

  73. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ruffolo, J. A. et al. Design of highly functional genome editors by modelling CRISPR–Cas sequences. Nature 645, 518–525 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Qu, Y. et al. CRISPR-GPT for agentic automation of gene-editing experiments. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-025-01463-z (2025).

  77. Feng, Y. et al. Discovery of CRISPR–Cas12a clades using a large language model. Nat. Commun. 16, 7877 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang, K. et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 387, eadr6006 (2025).

    CAS  PubMed  Google Scholar 

  79. Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Taveneau, C. et al. De novo design of potent CRISPR–Cas13 inhibitors. Nat. Chem. Biol. https://doi.org/10.1038/s41589-025-02136-3 (2026).

  81. Park, J.-C. et al. AI-generated MLH1 small binder improves prime editing efficiency. Cell 188, 5831–5846 (2025).

    CAS  PubMed  Google Scholar 

  82. Pacesa, M. et al. One-shot design of functional protein binders with BindCraft. Nature 464, 483–492 (2025).

    Google Scholar 

  83. Lauko, A. et al. Computational design of serine hydrolases. Science 388, eadu2454 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. O’Brien, A. R., Burgio, G. & Bauer, D. C. Domain-specific introduction to machine learning terminology, pitfalls and opportunities in CRISPR-based gene editing. Brief. Bioinform. 22, 308–314 (2021).

    PubMed  PubMed Central  Google Scholar 

  85. Fong, J. H. C. & Wong, A. S. L. Advancing CRISPR/Cas gene editing with machine learning. Curr. Opin. Biomed. Eng. 28, 100477 (2023).

    CAS  Google Scholar 

  86. Abbaszadeh, A. & Shahlai, A. Artificial intelligence for CRISPR guide RNA design: explainable models and off-target safety. Preprint at arXiv https://doi.org/10.48550/arXiv.2508.20130 (2025).

  87. Xiang, X. et al. Enhancing CRISPR–Cas9 gRNA efficiency prediction by data integration and deep learning. Nat. Commun. 12, 3238 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl Acad. Sci. USA 116, 22071–22080 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Kim, M., Go, M., Kang, S.-H., Jeong, S. & Lim, K. Revolutionizing CRISPR technology with artificial intelligence. Exp. Mol. Med. 57, 1419–1431 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dixit, S., Kumar, A., Srinivasan, K., Vincent, P. M. D. R. & Ramu Krishnan, N. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Front. Bioeng. Biotechnol. 11, 1335901 (2024).

    PubMed  PubMed Central  Google Scholar 

  92. Abbasi, A. F., Asim, M. N. & Dengel, A. Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR. J. Transl. Med. 23, 153 (2025).

    PubMed  PubMed Central  Google Scholar 

  93. Liu, L. et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714–726 (2017).

    CAS  PubMed  Google Scholar 

  94. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Institutes of Health (R01GM141329) and the National Science Foundation (CHE-2144823). G.P. also acknowledges support from the Sloan Foundation (FG-2023-20431) and the Camille and Henry Dreyfus Foundation (TC-24-063).

Author information

Authors and Affiliations

Authors

Contributions

G.P. conceptualized and drafted the review article. C.P. contributed to the writing. Both authors jointly developed the graphical representations.

Corresponding author

Correspondence to Giulia Palermo.

Ethics declarations

Competing interests

C.P. and G.P. are coinventors on patent applications filed by the University of California, Riverside.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Qi Liu, Li Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindi, C., Palermo, G. Computation and deep-learning-driven advances in CRISPR genome editing. Nat Struct Mol Biol 33, 203–214 (2026). https://doi.org/10.1038/s41594-025-01739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01739-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing