Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Ex situ determination of freely dissolved concentrations of hydrophobic organic chemicals in sediments and soils: basis for interpreting toxicity and assessing bioavailability, risks and remediation necessity

Abstract

The freely dissolved concentration (Cfree) of hydrophobic organic chemicals in sediments and soils is considered the driver behind chemical bioavailability and, ultimately, toxic effects in benthic organisms. Therefore, quantifying Cfree, although challenging, is critical when assessing risks of contamination in field and spiked sediments and soils (e.g., when judging remediation necessity or interpreting results of toxicity assays performed for chemical safety assessments). Here, we provide a state-of-the-art passive sampling protocol for determining Cfree in sediment and soil samples. It represents an international consensus procedure, developed during a recent interlaboratory comparison study. The protocol describes the selection and preconditioning of the passive sampling polymer, critical incubation system component dimensions, equilibration and equilibrium condition confirmation, quantitative sampler extraction, quality assurance/control issues and final calculations of Cfree. The full procedure requires several weeks (depending on the sampler used) because of prolonged equilibration times. However, hands-on time, excluding chemical analysis, is approximately 3 d for a set of about 15 replicated samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photograph of different passive samplers.

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    CAS  PubMed  Google Scholar 

  2. Dickson, K. L., Maki, A. W. & Brungs, W. A. Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems (SETAC Special Publication, Pergamon, 1987).

  3. Di Toro, D. M. et al. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 10, 1541–1583 (1991).

    Google Scholar 

  4. US Environmental Protection Agency. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Report No. SW‐846 (USEPA, 2015).

  5. Lydy, M. J. et al. Passive sampling methods for contaminated sediments: state of the science for organic contaminants. Integr. Environ. Assess. Manag. 10, 167–178 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayer, P. et al. Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr. Environ. Assess. Manag 10, 197–209 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenberg, M. S. et al. Passive sampling methods for contaminated sediments: risk assessment and management. Integr. Environ. Assess. Manag. 10, 224–236 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hawthorne, S. B. et al. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. Anal. Chem. 83, 6754–6761 (2011).

    CAS  PubMed  Google Scholar 

  9. Cornelissen, G. et al. Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic sea. Environ. Sci. Technol. 42, 8733–8739 (2008).

    CAS  PubMed  Google Scholar 

  10. Jahnke, A., Mayer, P. & McLachlan, M. S. Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in baltic sea sediment. Environ. Sci. Technol. 46, 10114–10122 (2012).

    CAS  PubMed  Google Scholar 

  11. Parkerton, T. F. & Maruya, K. A. Passive sampling in contaminated sediment assessment: building consensus to improve decision making. Integr. Environ. Assess. Manag 10, 163–166 (2014).

    CAS  PubMed  Google Scholar 

  12. Booij, K. et al. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ. Sci. Technol. 50, 3–17 (2016).

    CAS  PubMed  Google Scholar 

  13. Apell, J. N. & Gschwend, P. M. In situ passive sampling of sediments in the Lower Duwamish Waterway Superfund site: replicability, comparison with ex situ measurements, and use of data. Environ. Pollut. 218, 95–101 (2016).

    CAS  PubMed  Google Scholar 

  14. Ghosh, U. et al. Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr. Environ. Assess. Manag 10, 210–223 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandez, L. A., Macfarlane, J. K., Tcaciuc, A. P. & Gschwend, P. M. Measurement of freely dissolved PAH concentrations in sediment beds using passive sampling with low-density polyethylene strips. Environ. Sci. Technol. 43, 1430–1436 (2009).

    CAS  PubMed  Google Scholar 

  16. Khairy, M. A. & Lohmann, R. Using polyethylene passive samplers to study the partitioning and fluxes of polybrominated diphenyl ethers in an urban river. Environ. Sci. Technol. 51, 9062–9071 (2017).

    CAS  PubMed  Google Scholar 

  17. Jonker, M. T. O. & Koelmans, A. A. Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ. Sci. Technol. 35, 3742–3748 (2001).

    CAS  PubMed  Google Scholar 

  18. Gomez-Eyles, J. L., Jonker, M. T. O., Hodson, M. E. & Collins, C. D. Passive samplers provide a better prediction of PAH bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions. Environ. Sci. Technol. 46, 962–969 (2012).

    CAS  PubMed  Google Scholar 

  19. Cornelissen, G., Arp, H. P. H., Pettersen, A., Hauge, A. & Breedveld, G. D. Assessing PAH and PCB emissions from the relocation of harbour sediments using equilibrium passive samplers. Chemosphere 72, 1581–1587 (2008).

    CAS  Google Scholar 

  20. Smedes, F., Van Vliet, L. A. & Booij, K. Multi-ratio equilibrium passive sampling method to estimate accessible and pore water concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment. Environ. Sci. Technol. 47, 510–517 (2013).

    CAS  PubMed  Google Scholar 

  21. Tuikka, A. I. et al. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments. Sci. Total Environ. 563-564, 396–404 (2016).

    CAS  PubMed  Google Scholar 

  22. Ter Laak, T. L., Agbo, S. O., Barendregt, A. & Hermens, J. L. M. Freely dissolved concentrations of PAHs in soil pore water: measurements via solid-phase extraction and consequences for soil tests. Environ. Sci. Technol. 40, 1307–1313 (2006).

    PubMed  Google Scholar 

  23. Maruya, K. A., Zeng, E. Y., Tsukada, D. & Bay, S. M. A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water. Environ. Toxicol. Chem. 28, 733–740 (2009).

    CAS  PubMed  Google Scholar 

  24. Thomas, C., Lampert, D. & Reible, D. Remedy performance monitoring at contaminated sediment sites using profiling solid phase microextraction (SPME) polydimethylsiloxane (PDMS) fibers. Environ. Sci. Process. Impacts 16, 445–452 (2014).

    CAS  PubMed  Google Scholar 

  25. Reichenberg, F., Smedes, F., Jönsson, J. A. & Mayer, P. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chem. Cent. J. 2, 8 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Golding, C. J., Gobas, F. A. P. C. & Birch, G. F. Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction. Environ. Toxicol. Chem. 26, 829–836 (2007).

    CAS  PubMed  Google Scholar 

  27. St. George, T., Vlahos, P., Harner, T., Helm, P. & Wilford, B. A rapidly equilibrating, thin film, passive water sampler for organic contaminants; characterization and field testing. Environ. Pollut. 159, 481–486 (2011).

    Google Scholar 

  28. Jonker, M. T. O. et al. Advancing the use of passive sampling in risk assessment and management of sediments contaminated with hydrophobic organic chemicals: results of an international ex situ passive sampling interlaboratory comparison. Environ. Sci. Technol. 52, 3574–3582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. US Environmental Protection Agency/Strategic Environmental Research and Development Program/Environmental Security Technology Certification Program. Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User’s Manual. Report No. EPA/600/R-16/357 (Office of Research and Development, 2017).

  30. Risticevic, S., Lord, H., Górecki, T., Arthur, C. L. & Pawliszyn, J. Protocol for solid-phase microextraction method development. Nat. Protoc. 5, 122–139 (2010).

    CAS  PubMed  Google Scholar 

  31. US Environmental Protection Agency. Guidelines for Using Passive Samplers to Monitor Nonionic Organic Contaminants at Superfund Sediment Sites. Sediment Assessment and Monitoring Sheet. Report No. OSWER Directive 9200.1-110 FS (Office of Superfund Remediation and Technology Innovation/Office of Research and Development, 2012).

  32. Fernandez, L. A., Lao, W., Maruya, K. A. & Burgess, R. M. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes Shelf Superfund site using polymeric passive samplers. Environ. Sci. Technol. 48, 3925–3934 (2014).

    CAS  PubMed  Google Scholar 

  33. Burgess, R. M. et al. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine Superfund sites. Environ. Toxicol. Chem. 34, 1720–1733 (2015).

    CAS  PubMed  Google Scholar 

  34. Jahnke, A., Witt, G., Schäfer, S., Haase, N. & Escher, B. I. Combining passive sampling with toxicological characterization of complex mixtures of pollutants from the aquatic environment. Adv. Biochem. Eng. Biotechnol. 157, 225–261 (2017).

    CAS  PubMed  Google Scholar 

  35. European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment. R.7b: Endpoint Specific Guidance. Version 4.0 (ECHA, 2017).

  36. US Environmental Protection Agency. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants With Freshwater Invertebrates. Report No. EPA 600-R-99-096 (Office of Research and Development, 2000).

  37. Organisation for Economic Cooperation and Development. OECD Guidelines for the Testing of Chemicals. Test No. 218: Sediment-Water Chironomid Toxicity Using Spiked Sediment (OECD, 2004).

  38. Organisation for Economic Cooperation and Development. OECD Guidelines for the Testing of Chemicals. 225: Sediment-water Lumbriculus toxicity test using spiked sediment (OECD, 2007).

  39. Ortega-Calvo, J. J. et al. From bioavailability science to regulation of organic chemicals. Environ. Sci. Technol. 49, 10255–10264 (2015).

    CAS  PubMed  Google Scholar 

  40. Carr, R. S. & Nipper, M. Porewater Toxicity Testing: Biological, Chemical, and Ecological Considerations (SETAC Press, 2003).

  41. Zhang, H., Davison, W., Miller, S. & Tych, W. In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT. Geochim. Cosmochim. Acta 59, 4181–4192 (1995).

    CAS  Google Scholar 

  42. Senn, D. B. et al. Equilibrium-based sampler for determining Cu2+ concentrations in aquatic ecosystems. Environ. Sci. Technol. 38, 3381–3386 (2004).

    CAS  PubMed  Google Scholar 

  43. Dong, Z., Lewis, C. G., Burgess, R. M. & Shine, J. P. The Gellyfish: an in situ equilibrium-based sampler for determining multiple free metal ion concentrations in marine ecosystems. Environ. Toxicol. Chem. 34, 983–992 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Haftka, J. J. H., Hammer, J. & Hermens, J. L. M. Mechanisms of neutral and anionic surfactant sorption to solid-phase microextraction fibers. Environ. Sci. Technol. 49, 11053–11061 (2015).

    CAS  PubMed  Google Scholar 

  45. Haftka, J. J. H., Scherpenisse, P., Jonker, M. T. O. & Hermens, J. L. M. Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon. Environ. Sci. Technol. 47, 4455–4462 (2013).

    CAS  PubMed  Google Scholar 

  46. Warren, J. K., Vlahos, P., Smith, R. & Tobias, C. Investigation of a new passive sampler for the detection of munitions compounds in marine and freshwater systems. Environ. Toxicol. Chem. 37, 1990–1997 (2018).

    CAS  PubMed  Google Scholar 

  47. Ter Laak, T. L., Barendregt, A. & Hermens, J. L. M. Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ. Sci. Technol. 40, 2184–2190 (2006).

    PubMed  Google Scholar 

  48. US Environmental Protection Agency. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Procedures for the Determination of the Freely Dissolved Interstitial Water Concentrations of Nonionic Organics. Report No. EPA-600-R-02-012 (Office of Research and Development, 2012).

  49. Van der Heijden, S. A. & Jonker, M. T. O. PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation. Environ. Sci. Technol. 43, 3757–3763 (2009).

    PubMed  Google Scholar 

  50. Giesen, D., Jonker, M. T. O. & van Gestel, C. A. M. Development of QSARs for the toxicity of chlorobenzenes to the soil dwelling springtail Folsomia candida. Environ. Tox. Chem. 31, 1136–1142 (2012).

    CAS  Google Scholar 

  51. Ahn, S. et al. Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon. Environ. Sci. Technol. 39, 6516–6526 (2005).

    CAS  PubMed  Google Scholar 

  52. Rusina, T. P., Smedes, F., Klanova, J., Booij, K. & Holoubek, I. Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68, 1344–1351 (2007).

    CAS  PubMed  Google Scholar 

  53. Jonker, M. T. O., Sinke, A. J. C., Brils, J. M. & Koelmans, A. A. Sorption of polycyclic aromatic hydrocarbons to oil contaminated sediment: unresolved complex? Environ. Sci. Technol. 37, 5197–5203 (2003).

    CAS  PubMed  Google Scholar 

  54. Muijs, B. & Jonker, M. T. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms. Environ. Toxicol. Chem. 29, 1943–1949 (2010).

    CAS  PubMed  Google Scholar 

  55. Muijs, B. & Jonker, M. T. O. Assessing the bioavailability of complex petroleum hydrocarbon mixtures in sediments. Environ. Sci. Technol. 45, 3554–3561 (2011).

    CAS  PubMed  Google Scholar 

  56. Fernandez, L. A. Polyethylene Passive Samplers for Measuring Hydrophobic Organic Chemical Concentrations in Sediment Porewaters and their Use in Predicting Bioaccumulation in Soft-Shell Clams (Mya arenaria) from Sites Near Boston, MA. PhD thesis, MIT (2010).

  57. Perron, M. M., Burgess, R. M., Suuberg, E. M., Cantwell, M. G. & Pennell, K. G. Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern. Environ. Toxicol. Chem. 32, 2182–2189 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Oen, A. M. P. et al. In situ measurement of PCB pore water concentration profiles in activated carbon-amended sediment using passive samplers. Environ. Sci. Technol. 45, 4053–4059 (2011).

    CAS  PubMed  Google Scholar 

  59. Sanders, J. P., Andrade, N. A. & Ghosh, U. Evaluation of passive sampling polymers and nonequilibrium adjustment methods in a multiyear surveillance of sediment porewater PCBs. Environ. Toxicol. Chem. 37, 2487–2495 (2018).

    CAS  PubMed  Google Scholar 

  60. Nelson, D. W. & Sommers, L. E. Total Organic Carbon and Organic Matter. 2nd edn, 539–579 (ASA and SSSA, 1982).

  61. Karickhoff, S. W., Brown, D. S. & Scott, T. A. Sorption of hydrophobic pollutants on natural sediments. Water Res 13, 241–248 (1979).

    CAS  Google Scholar 

  62. Endo, S., Grathwohl, P., Haderlein, S. B. & Schmidt, T. C. LFERs for soil organic carbon - water distribution coefficients (K OC) at environmentally relevant sorbate concentrations. Environ. Sci. Technol. 43, 3094–3100 (2009).

    CAS  PubMed  Google Scholar 

  63. Luthy, R. G. et al. Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 31, 3341–3347 (1997).

    CAS  Google Scholar 

  64. Alexander, M. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 34, 4259–4265 (2000).

    CAS  Google Scholar 

  65. Cornelissen, G. et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 39, 6881–6895 (2005).

    CAS  PubMed  Google Scholar 

  66. Smedes, F. & Booij, K. Guidelines for Passive Sampling of Hydrophobic Contaminants in Water Using Silicone Rubber Samplers. Report No. 52, ICES Techniques in Marine Environmental Sciences (International Council for the Exploration of the Sea, 2012).

  67. Jalalizadeh, M. & Ghosh, U. Analysis of measurement errors in passive sampling of porewater PCB concentrations under static and periodically vibrated conditions. Environ. Sci. Technol. 51, 7018–7027 (2017).

    CAS  PubMed  Google Scholar 

  68. Joyce, A. S. & Burgess, R. M. Using performance reference compounds to compare mass transfer calibration methodologies in passive samplers deployed in the water column. Environ. Toxicol. Chem. 37, 2089–2097 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lampert, D. J., Thomas, C. & Reible, D. D. Internal and external transport significance for predicting contaminant uptake rates in passive samplers. Chemosphere 119, 910–916 (2015).

    CAS  PubMed  Google Scholar 

  70. Jonker, M. T. O., Van Der Heijden, S. A., Kotte, M. & Smedes, F. Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ. Sci. Technol. 49, 6791–6799 (2015).

    CAS  PubMed  Google Scholar 

  71. Jonker, M. T. O., Van Der Heijden, S. A., Kreitinger, J. P. & Hawthorne, S. B. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Environ. Sci. Technol. 41, 7472–7478 (2007).

    CAS  PubMed  Google Scholar 

  72. Lambert, M. K., Friedman, C., Luey, P. & Lohmann, R. Role of black carbon in the sorption of polychlorinated dibenzo-p-dioxins and dibenzofurans at the diamond alkali Superfund site, Newark Bay, New Jersey. Environ. Sci. Technol. 45, 4331–4338 (2011).

    CAS  PubMed  Google Scholar 

  73. Witt, G. et al. Passive equilibrium sampler for in situ measurements of freely dissolved concentrations of hydrophobic organic chemicals in sediments. Environ. Sci. Technol. 47, 7830–7839 (2013).

    CAS  PubMed  Google Scholar 

  74. Choi, Y., Wu, Y., Luthy, R. G. & Kang, S. Non-equilibrium passive sampling of hydrophobic organic contaminants in sediment pore-water: PCB exchange kinetics. J. Hazard. Mater. 318, 579–586 (2016).

    CAS  PubMed  Google Scholar 

  75. Booij, K., Sleiderink, H. M. & Smedes, F. Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ. Toxicol. Chem. 17, 1236–1245 (1998).

    CAS  Google Scholar 

  76. Choi, Y., Cho, Y. M. & Luthy, R. G. Polyethylene-water partitioning coefficients for parent- and alkylated-polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ. Sci. Technol. 47, 6943–6950 (2013).

    CAS  PubMed  Google Scholar 

  77. Reitsma, P. J., Adelman, D. & Lohmann, R. Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions. Environ. Sci. Technol. 47, 10429–10437 (2013).

    CAS  PubMed  Google Scholar 

  78. Smedes, F., Geertsma, R. W., Van Der Zande, T. & Booij, K. Polymer-water partition coefficients of hydrophobic compounds for passive sampling: application of cosolvent models for validation. Environ. Sci. Tech 43, 7047–7054 (2009).

    CAS  Google Scholar 

  79. Smedes, F. SSP silicone–, lipid– and SPMD–water partition coefficients of seventy hydrophobic organic contaminants and evaluation of the water concentration calculator for SPMD. Chemosphere 223, 748–757 (2019).

    CAS  PubMed  Google Scholar 

  80. Booij, K., Smedes, F. & Allan, I. J. Guidelines for determining polymer-water and polymer-polymer partition coefficients of organic compounds. Report No. 61, ICES. Techniques in Marine Environmental Sciences (International Council for the Exploration of the Sea, 2017).

  81. Fernandez, L. A., Harvey, C. F. & Gschwend, P. M. Using performance reference compounds in polyethylene passive samplers to deduce sediment porewater concentrations for numerous target chemicals. Environ. Sci. Technol. 43, 8888–8894 (2009).

    CAS  PubMed  Google Scholar 

  82. Shen, X. & Reible, D. An analytical model for the fate and transport of performance reference compounds and target compounds around cylindrical passive samplers. Chemosphere 232, 489–495 (2019).

    CAS  PubMed  Google Scholar 

  83. Apell, J. N. & Gschwend, P. M. Validating the use of performance reference compounds in passive samplers to assess porewater concentrations in sediment beds. Environ. Sci. Technol. 48, 10301–10307 (2014).

    CAS  PubMed  Google Scholar 

  84. Thompson, J. M., Hsieh, C. H. & Luthy, R. G. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers. Environ. Sci. Technol. 49, 2270–2277 (2015).

    CAS  PubMed  Google Scholar 

  85. Booij, K., Hoedemaker, J. R. & Bakker, J. F. Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments. Environ. Sci. Technol. 37, 4213–4220 (2003).

    CAS  PubMed  Google Scholar 

  86. Rusina, T. P., Smedes, F., Koblizkova, M. & Klanova, J. Calibration of silicone rubber passive samplers: experimental and modeled relations between sampling rate and compound properties. Environ. Sci. Technol. 44, 362–367 (2010).

    CAS  PubMed  Google Scholar 

  87. Smedes, F. Silicone–water partition coefficients determined by cosolvent method for chlorinated pesticides, musks, organo phosphates, phthalates and more. Chemosphere 210, 662–671 (2018).

    CAS  PubMed  Google Scholar 

  88. Booij, K., Smedes, F. & Van Weerlee, E. M. Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere 46, 1157–1161 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.T.O.J. acknowledges financial support from the European Chemical Industry Council’s Long-range Research Initiative program (Cefic-LRI), under contracts ECO22 and ECO43. F.S. acknowledges support by the Czech Ministry of Education, Youth, and Sports (LM2018121) and the European Structural and Investment Funds, Operational Program Research, Development, and Education (CZ.02.1.01/0.0/0.0/16_013/0001761). R.L. acknowledges support from SERDP ER-2538. This publication represents U.S. Environmental Protection Agency ORD-033094.

Author information

Authors and Affiliations

Authors

Contributions

M.T.O.J. wrote the manuscript. F.S. drafted Box 1 and the section on interpretation of PRC results and helped fine-tune several conceptual and methodological aspects. R.L. drafted the ‘PRC’ section in the ‘Experimental design’ section. R.M.B., U.G., P.M.G., S.E.H., M.J.L., K.A.M., and D.R. contributed to improving the manuscript by providing comments and edits.

Corresponding author

Correspondence to Michiel T. O. Jonker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Jonker, M. T. O. et al. Environ. Sci. Technol. 52, 3574–3582 (2018): https://doi.org/10.1021/acs.est.7b05752

Integrated supplementary information

Supplementary Figure 1 Weighing polymer strips.

Weighing of polymer strips is most convenient when using a (cleaned) support device (e.g., an upside down aluminum cryotube, as shown). This prevents the sampler from contacting the possibly contaminated surface of the balance and facilitates picking-up the sampler with tweezers.

Supplementary Figure 2 Cutting SPME fibers.

Cutting SPME fibers can be performed using a glass plate, underneath which a ruler is fixed. The image also shows a magnifying glass, a razor blade, a 20 mL vial for the fibers, and a fiber roll.

Supplementary Figure 3 Adding sample to the equilibration system.

Use a glass funnel placed in the mouth of either the bottle (polymer strips) or 15 mL vial (SPME fibers) when adding the sediment or soil sample.

Supplementary Figure 4 Application of aluminum foil on 120 mL bottles.

When using 120 mL equilibration bottles, apply a 5x5 cm piece of thick acetone-cleaned laboratory aluminum foil in order not to expose the sample to the plastic cap. Place the foil on the mouth of the bottle, with the dull side facing the inside of the bottle. Carefully crimp the foil around the neck, making sure that the foil touches the bottle mouth completely, showing no creases.

Supplementary Figure 5 Overall setup for collecting polymer strips.

Overview of needed materials and setup for collecting and cleaning polymer strips.

Supplementary Figure 6 Overall setup for collecting SPME fibers.

Overview of needed materials and setup for collecting and cleaning SPME fibers.

Supplementary Figure 7 Collecting a sampler from a sediment or soil suspension.

Using a tea sieve placed on a beaker is a convenient way of collecting a polymer strip or short SPME fiber from an equilibration bottle/vial.

Supplementary Figure 8 Placing polymer strips in extraction vials.

Stick the cleaned polymer strip in the mouth of the corresponding autosampler vial and cut into multiple pieces of ≤ 7 mm, such that the pieces will fit in the flat position at the bottom of the vial.

Supplementary Figure 9 Cleaning SPME fibers.

Hold the SPME fiber between the fore/middle finger and thumb and wipe with a damp tissue, held in the other hand.

Supplementary Figure 10 Cutting SPME fibers.

Stick the fiber into the mouth of the corresponding autosampler vial and cut with a clean wire cutter into pieces with such a length that these will be submerged in the solvent (e.g., ≤ 1.3 cm pieces in the case 300 µL inserts are used).

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Methods and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonker, M.T.O., Burgess, R.M., Ghosh, U. et al. Ex situ determination of freely dissolved concentrations of hydrophobic organic chemicals in sediments and soils: basis for interpreting toxicity and assessing bioavailability, risks and remediation necessity. Nat Protoc 15, 1800–1828 (2020). https://doi.org/10.1038/s41596-020-0311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-020-0311-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing