Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tutorial: fluorescence lifetime microscopy of membrane mechanosensitive Flipper probes

Abstract

Measuring forces within living cells remains a technical challenge. In this Tutorial, we cover the development of hydrophobic mechanosensing fluorescent probes called Flippers, whose fluorescence lifetime depends on lipid packing. Flipper probes can therefore be used as reporters for membrane tension via the measurement of changes in their fluorescence lifetime. We describe the technical optimization of the probe for imaging and provide working examples for their characterizations in a variety of biological and in vitro systems. We further provide a guideline to measure biophysical parameters of cellular membranes by fluorescence lifetime imaging microscopy using Flipper probes, providing evidence that flippers can report long range forces in cells, tissues and organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of Flipper probes.
Fig. 2: The general behavior of Flipper probes.
Fig. 3: Troubleshooting Flipper probes experiments.
Fig. 4: How to properly extract the Flipper-TR lifetime from FLIM image.
Fig. 5: Flipper-TR lifetime is affected by several parameters.
Fig. 6: Flipper lifetime allow to detect membrane tension variations even if lipid composition is different.

Similar content being viewed by others

References

  1. Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    CAS  PubMed  Google Scholar 

  2. Abella, M., Andruck, L., Malengo, G. & Skruzny, M. Actin-generated force applied during endocytosis measured by Sla2-based FRET tension sensors. Dev. Cell 56, 2419–2426.e4 (2021).

    CAS  PubMed  Google Scholar 

  3. Déjardin, T. et al. Nesprins are mechanotransducers that discriminate epithelial–mesenchymal transition programs. J. Cell Biol. 219, e201908036 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Li, W. et al. A membrane-bound biosensor visualizes shear stress-induced inhomogeneous alteration of cell membrane tension. iScience 7, 180–190 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Páez-Pérez, M., López-Duarte, I., Vyšniauskas, A., Brooks, N. J. & Kuimova, M. K. Imaging non-classical mechanical responses of lipid membranes using molecular rotors. Chem. Sci. 12, 2604–2613 (2021).

    Google Scholar 

  6. Assies, L. et al. Flipper probes for the community. Chim. Int. J. Chem. 75, 1004–1011 (2021).

    CAS  Google Scholar 

  7. Soleimanpour, S. et al. Headgroup engineering in mechanosensitive membrane probes. Chem. Commun. 52, 14450–14453 (2016).

    CAS  Google Scholar 

  8. Colom, A. et al. A fluorescent membrane tension probe. Nat. Chem. 10, 1118–1125 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mercier, V. et al. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat. Cell Biol. 22, 947–959 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roffay, C. et al. Passive coupling of membrane tension and cell volume during active response of cells to osmosis. Proc. Natl Acad. Sci. USA 118, e2103228118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ni, Q. et al. Cytoskeletal activation of NHE1 regulates cell volume and DNA methylation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.31.555808 (2023).

  12. Michels, L. et al. Complete microviscosity maps of living plant cells and tissues with a toolbox of targeting mechanoprobes. Proc. Natl Acad. Sci. USA 117, 18110–18118 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Coomer, C. A. et al. Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathog. 16, e1008359 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiménez-Rojo, N. et al. Conserved functions of ether lipids and sphingolipids in the early secretory pathway. Curr. Biol. 30, 3775–3787.e7 (2020).

    PubMed  Google Scholar 

  15. Mylvaganam, S. et al. The spectrin cytoskeleton integrates endothelial mechanoresponses. Nat. Cell Biol. 24, 1226–1238 (2022).

    CAS  PubMed  Google Scholar 

  16. Lachuer, H., Le, L., Lévêque-Fort, S., Goud, B. & Schauer, K. Spatial organization of lysosomal exocytosis relies on membrane tension gradients. Proc. Natl Acad. Sci. 120, e2207425120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lachowski, D. et al. Substrate stiffness-driven membrane tension modulates vesicular trafficking via caveolin-1. ACS Nano 16, 4322–4337 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Riggi, M. et al. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat. Cell Biol. 20, 1043–1051 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Riggi, M., Kusmider, B. & Loewith, R. The flipside of the TOR coin—TORC2 and plasma membrane homeostasis at a glance. J. Cell Sci. 133, jcs242040 (2020).

    CAS  PubMed  Google Scholar 

  20. Wang, S. et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11, 2303 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider, A. F. L., Kithil, M., Cardoso, M. C., Lehmann, M. & Hackenberger, C. P. R. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat. Chem. 13, 530–539 (2021).

    CAS  PubMed  Google Scholar 

  23. Hetmanski, J. H. R. et al. Membrane tension orchestrates rear retraction in matrix-directed cell migration. Dev. Cell 51, 460–475.e10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yavitt, F. M. et al. In situ modulation of intestinal organoid epithelial curvature through photoinduced viscoelasticity directs crypt morphogenesis. Sci. Adv. 9, eadd5668 (2023).

    PubMed  PubMed Central  Google Scholar 

  25. Goujon, A. et al. Mechanosensitive fluorescent probes to image membrane tension in mitochondria, endoplasmic reticulum, and lysosomes. J. Am. Chem. Soc. 141, 3380–3384 (2019).

    CAS  PubMed  Google Scholar 

  26. Dal Molin, M. et al. Fluorescent flippers for mechanosensitive membrane probes. J. Am. Chem. Soc. 137, 568–571 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. García-Sáez, A. J., Chiantia, S. & Schwille, P. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282, 33537–33544 (2007).

    PubMed  Google Scholar 

  28. Hamada, T., Kishimoto, Y., Nagasaki, T. & Takagi, M. Lateral phase separation in tense membranes. Soft Matter 7, 9061–9068 (2011).

    CAS  Google Scholar 

  29. Shimokawa, N. & Hamada, T. Physical concept to explain the regulation of lipid membrane phase separation under isothermal conditions. Life 13, 1105 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. García-Calvo, J. et al. HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chem. Sci. 13, 2086–2093 (2022).

    PubMed  PubMed Central  Google Scholar 

  31. Licari, G., Strakova, K., Matile, S. & Tajkhorshid, E. Twisting and tilting of a mechanosensitive molecular probe detects order in membranes. Chem. Sci. 11, 5637–5649 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Harris, F. M., Best, K. B. & Bell, J. D. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim. Biophys. Acta 1565, 123–128 (2002).

    CAS  PubMed  Google Scholar 

  33. Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ragaller, F. et al. Quantifying fluorescence lifetime responsiveness of environment sensitive probes for membrane fluidity measurements. J. Phys. Chem. B. 128, 2154–2167 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Piazzolla, F. et al. Fluorescent membrane tension probes for early endosomes. Angew. Chem. Int. Ed. 133, 12366–12371 (2021).

    Google Scholar 

  36. García-Calvo, J. et al. Fluorescent membrane tension probes for super-resolution microscopy: combining mechanosensitive cascade switching with dynamic-covalent ketone chemistry. J. Am. Chem. Soc. 142, 12034–12038 (2020).

    PubMed  Google Scholar 

  37. López-Andarias, J. et al. Photocleavable fluorescent membrane tension probes: fast release with spatiotemporal control in inner leaflets of plasma membrane, nuclear envelope, and secretory pathway. Angew. Chem. Int. Ed. 61, e202113163 (2022).

    Google Scholar 

  38. Gao, D. et al. FLIMJ: an open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLoS ONE 15, e0238327 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Warren, S. C. et al. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets. PLoS ONE 8, e70687 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Köllner, M. & Wolfrum, J. How many photons are necessary for fluorescence-lifetime measurements? Chem. Phys. Lett. 200, 199–204 (1992).

    Google Scholar 

  41. Parasassi, T., Gratton, E., Yu, W. M., Wilson, P. & Levi, M. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys. J. 72, 2413–2429 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zlotek-Zlotkiewicz, E., Monnier, S., Cappello, G., Le Berre, M. & Piel, M. Optical volume and mass measurements show that mammalian cells swell during mitosis. J. Cell Biol. 211, 765–774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fischer-Friedrich, E., Hyman, A. A., Jülicher, F., Müller, D. J. & Helenius, J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci. Rep. 4, 1–8 (2014).

    Google Scholar 

  44. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    CAS  PubMed  Google Scholar 

  45. Storck, E. M., Özbalci, C. & Eggert, U. S. Lipid cell biology: a focus on lipids in cell division. Annu. Rev. Biochem. 87, 839–869 (2018).

    CAS  PubMed  Google Scholar 

  46. Atilla-Gokcumen, G. E. et al. Dividing cells regulate their lipid composition and localization. Cell 156, 428–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Andrade, V. et al. Caveolae promote successful abscission by controlling intercellular bridge tension during cytokinesis. Sci. Adv. 8, eabm5095 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Royer, C. et al. ASPP2 maintains the integrity of mechanically stressed pseudostratified epithelia during morphogenesis. Nat. Commun. 13, 941 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Srinivas and C. Royer (University of Oxford) for isolating and staining the mouse embryos. F.S. is grateful for the support from the EMBO (ALTF 849-2020) and HFSP (LT000404/2021-L) long-term postdoctoral fellowships. F.S. thanks S. Fraser (University of Southern California) for the support and supervision and acknowledges the Translational Imaging Center (University of Southern California) for access to instrumentation and expertise. A.C. also acknowledges funding from MCIU, PID2019-111096GA-I00; MCIU/AEI/FEDER MINECOG19/P66, RYC2018-024686-I and the Basque Government T1270-19. V.D. thanks P.-F. Lenne (IBDM Marseille) for supervision and resources. V.D. acknowledges support by an HFSP long-term postdoctoral fellowship (HFSP LT0058/2022-L) and the France–BioImaging infrastructure supported by the French National Research Agency (ANR–10–INBS- 04-01, Investments for the future). V.D. thanks F. Schnorrer (IBDM Marseille) for access to the FLIM system. S.M. thank the University of Geneva, the National Centre of Competence in Research Chemical Biology (51NF40-185898), the National Centre of Competence in Research Molecular Systems Engineering (51NF40-182895) and the Swiss NSF (Excellence Grant 200020 204175; SNSF-ERC Advanced Grant TIMEUP, TMAG-2_209190) for financial support. A.R. acknowledges funding from the Swiss National Fund for Research Grants nos. 310030_200793 and no. CRSII5_189996 and the European Research Council Synergy Grant no. 951324 R2-TENSION.

Author information

Authors and Affiliations

Authors

Contributions

The project was designed by C.R., A.R. and V.M. C.R. and V.M. carried out most of the experiments and analyses. J.M.G.-A. performed the experiments on bacteria, P.C. performed some experiments on MDCK, C.T. performed experiments on alginate tubes, F.S. performed the biphoton experiments, I.D.M. performed experiments with alginate capsules, A.C. performed experiments on Arabidopsis, K.B. and V.D. performed the experiments on Xenopus and J.L.-A. and S.M. designed and synthesized the Flippers molecules. C.R., V.M. and A.R. wrote the paper, with corrections from all co-authors.

Corresponding authors

Correspondence to Aurélien Roux or Vincent Mercier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 FLIM of Flipper-TR using two-photon microscopy.

(a) Absorption and excitation spectrum of the Flipper-TR. (b) Two-photon excitation spectra of Flipper-TR, acquired in 48h gastruloids. Five gastruloids were imaged in total at each wavelength. The acquired spectra were normalized to the maximum intensity value. Dots represented the average value, scattered lines the minimum/ maximum values of the 5 recorded spectra. (c) and (d): Lifetime of Flipper-TR in GUVs of different compositions DOPC (c) and 1:4 DOPC:Cholesterol (d) at different laser repetition rates and under two-photon excitation. Every dot represents fitted lifetime for 1 GUV, error bars are standard deviation and line is mean. (e) Fluorescence lifetime images of GUVs from (c, d) under typical excitation conditions (20 MHz, 488 nm, top panel) and under two-photon excitation (80 MHz, 900 nm, bottom panel). Longer lifetime component is shown (shorter lifetime component fixed). Image size is 36.4 × 36.4 µm2.

Extended Data Fig. 2 Effect of linearly polarized excitation light on Flipper-TR lifetime measurements in GPMVs and GUVs.

(a) Intensity and (b) Lifetime images of cell-derived vesicles. Photoselection of the fixed excitation dipole of the Flipper-TR probe (using a linearly polarized excitation laser) causes bright rings with higher intensity. Graphs show (c) Lifetime and (d) intensity analysis of bright vs dark regions. Every dot represents the lifetime fit across one vesicle. The line represents the mean and error bars are standard deviation. (e) Intensity and (f) lifetime and image of artificial vesicle composed of DOPC and Cholesterol (4:1). Image size is 36.4*36.4 µm2. The graphs represent (g) lifetime and (h) intensity analysis of bright vs dark regions. Every dot represents the lifetime fit across one vesicle. The line represents the mean and error bars are standard deviation.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roffay, C., García-Arcos, J.M., Chapuis, P. et al. Tutorial: fluorescence lifetime microscopy of membrane mechanosensitive Flipper probes. Nat Protoc 19, 3457–3469 (2024). https://doi.org/10.1038/s41596-024-01027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01027-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing