Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Visualizing plant salt stress with a NaCl-responsive fluorescent probe

An Addendum to this article was published on 06 October 2025

Abstract

Salt stress is an adverse environmental condition that harms plant growth and development. The development of salt stress probes is critical for tracking the growth dynamics of plants, molecular breeding or screening of growth regulators. The sodium chloride (NaCl)-responsive fluorescent probe Aza-CyBz is designed based on the tenet that NaCl induces formation of ordered aggregates, and the sensitive fluorescence response can enable the visualization of plant salt stress in root tip tissues and live plants. Herein, we describe a detailed three-step route for synthesis of Aza-CyBz and applications to monitoring salt stress in Arabidopsis thaliana. The procedures for operating fluorescence imaging under various stresses are also listed to eliminate interference from the oxidative mechanism of salt stress. Compared with conventional invasive approaches such as inductively coupled plasma emission spectrometry and flame photometer, our protocol can real-time monitor salt stress experienced by plants, which demands simple pretreatment procedure and staining technique. Due to near infrared fluorescence, this method provides direct visual observation of salt stress at both tissue and live plant levels, which is superior to conventional noninvasive approaches. The preparation of probe Aza-CyBz takes ~2 d, and the imaging experiments for assessing salt stress experienced by plants, including the preparation of stressed plant samples takes ~9–11 d for root tip tissues and ~23 d for live plants. Notably, acquisition and analysis visual images of salt stress in plants can be completed within 2 h and they require only a basic knowledge of spectroscopy and chemistry.

Key points

  • It is useful to measure NaCl uptake in plants noninvasively, e.g., to discover variants with better salt tolerance. This protocol describes how to prepare and use a NaCl-responsive fluorescent probe Aza-CyBz to image Arabidopsis root tips or whole plants.

  • The probe itself has an interesting mechanism: the presence of NaCl results in its aggregation and a reduction in fluorescence. The near infrared fluorescence could avoid background fluorescence interference from chlorophyll.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visualization of salt stress in root tips.
Fig. 2: Procedures for the visualization of salt stress of whole plants in vivo and control experiments in a Petri dish, with the time arrows indicating the duration of each step.
Fig. 3: Synthesis route and application of NaCl-responsive heptamethine cyanine Aza-CyBz.
Fig. 4: Spectroscopic characterization of Aza-CyBz toward NaCl.
Fig. 5: Fluorescence imaging of Aza-CyBz for plant salt stress in root tips.
Fig. 6: Fluorescence imaging of Aza-CyBz for the visualization of salt stress in live plants.
Fig. 7: Control experiments for the validation of NaCl sensing in plants with Aza-CyBz.
Fig. 8: Control imaging experiments with commercial CoroNa Green probe in vivo.

Similar content being viewed by others

Data availability

All supporting data are included in the article, its supplementary information, the supporting research paper and figshare. When the plants were photographed, each photograph had three plants. The images were cropped to show individual plants. In some cases, the cropped photographs still contained parts of other plants and these were hidden using black background. All unedited versions of main and supplementary figures can be found in figshare (https://doi.org/10.6084/m9.figshare.28985144).

References

  1. Farooq, M. et al. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 118, 199–217 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Ma, L., Liu, X., Lv, W. & Yang, Y. Molecular mechanisms of plant responses to salt stress. Front. Plant Sci. 13, 934877 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Isayenkov, S. V. & Maathuis, F. J. M. Plant salinity stress: many unanswered questions remain. Front. Plant Sci. 10, 80 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang, Y. & Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 60, 796–804 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, S. et al. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22, 4609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang, W., Ma, X., Wan, P. & Liu, L. Plant salt-tolerance mechanism: a review. Biochem. Biophys. Res. Commun. 495, 286–291 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Tanveera, M., Shahzada, B., Sharmac, A., Bijub, S. & Bhardwaj, R. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol. Biochem. 130, 69–79 (2018).

    Article  Google Scholar 

  8. Zhan, H. et al. Melatonin: a small molecule but important for salt stress tolerance in plants. Int. J. Mol. Sci. 20, 709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu, H. Plant salt tolerance and Na+ sensing and transport. Crop J. 6, 215–225 (2018).

    Article  Google Scholar 

  10. Zulfiqar, F. & Ashraf, M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 160, 257–268 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Per, T. S. et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 115, 126–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, Z. et al. How plant hormones mediate salt stress responses.Trends Plant Sci. 25, 1117–1130 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, C.-F. et al. Plant salinity sensors: current understanding and future directions. Front. Plant Sci. 13, 859224 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang, Y. & Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217, 523–539 (2017).

    Article  PubMed  Google Scholar 

  15. Sanchez, D. H. et al. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J. 53, 973–987 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Zeiner, M. et al. Influence of soil salinity on selected element contents in different brassica species. Molecules 27, 1878 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan, M. I. R., Asgher, M. & Khan, N. A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol. Biochem. 80, 67–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y.-E. et al. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plantarum 164, 349–363 (2018).

    Article  CAS  Google Scholar 

  19. Sehar, Z., Masood, A. & Khan, N. A. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ. Exp. Bot. 161, 277–289 (2019).

    Article  CAS  Google Scholar 

  20. Park, M., Lee, H., Lee, J.-S., Byun, M.-O. & Kim, B.-G. In planta measurements of Na+ using fluorescent dye CoroNa Green. J. Plant Biol. 52, 298–302 (2009).

    Article  CAS  Google Scholar 

  21. Wu, H. et al. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Front. Plant Sci. 6, 71 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cuin, T. A. et al. Assessing the role of root plasma membrane andtonoplast Na+/H+exchangers in salinity tolerancein wheat: in planta quantification methods. Plant Cell Environ. 34, 947–949 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, H. et al. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta 242, 847–857 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y. et al. Copalyl diphosphate synthase mutation improved salt tolerance in maize (Zea mays. L) via enhancing vacuolar Na+ sequestration and maintaining ROS homeostasis. Front. Plant Sci. 11, 457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, H. et al. Na+ extrusion from the cytosol and tissue-specific Na sequestration in roots confer differential salt stress tolerance between durum and bread wheat. J. Exp. Bot. 69, 3987–4001 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pedersen, O., Revsbech, N. P. & Shabala, S. Microsensors in plant biology: in vivo visualization of inorganic analytes with high spatial and/or temporal resolution. J. Exp. Bot. 71, 3941–3954 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, K. et al. Application of non-invasive microelectrode ion flux estimation technique in crop stress physiology. Chin. J. Appl. Ecol. 29, 678–686 (2018).

    Google Scholar 

  28. Shabala, S., Shabala, L., Bose, J., Cuin, T. & Newman, I. Ion flux measurements using the MIFE technique. Methods Mol. Bio. 953, 171–183 (2013).

    Article  CAS  Google Scholar 

  29. Martin, V. V. & Gee, A. R. R. Fluorescent metal ion indicators based on benzoannelated crown systems: a green fluorescent indicator for intracellular sodium ions. Bioorg. Med. Chem. Lett. 15, 1851–1855 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Yan, C. et al. Preparation of near-infrared AIEgen-active fluorescent probes for mapping amyloid-β plaques in brain tissues and living mice. Nat. Protoc. 18, 1316–1336 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Yin, J. et al. Preparation of a cyanine-based fluorescent probe for highly selective detection of glutathione and its use in living cells and tissues of mice. Nat. Protoc. 10, 1742–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Gadella, T. W. J. New near-infrared fluorescent probes and tools. Nat. Methods 19, 654–655 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y. et al. A cyanine dye to probe mitophagy: simultaneous detection of mitochondria and autolysosomes in live cells. J. Am. Chem. Soc. 138, 12368–12374 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Sun, W. et al. Recent development of chemosensors based on cyanine platforms. Chem. Rev. 116, 7768–7817 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Shen, S. et al. Recent progress on fluorescent probes for viruses. Chin. Chem. Lett. 35, 108360 (2024).

    Article  CAS  Google Scholar 

  36. Huang, Y., Ma, X., Li, J., Tan, C. & Yin, J. NIR-II cyanine nanoparticles for imaging-guided tumor targeting photothermal therapy with vitamin C enhanced efficacy. Adv. Therapeutics 6, 2300017 (2023).

    Article  CAS  Google Scholar 

  37. Li, D. et al. Synergistic effects of multiple rotors and hydrogen-bond interactions lead to sensitive near-infrared viscosity probes for live-cell microscopy. Sci. China Chem. 66, 2329–2338 (2023).

    Article  CAS  Google Scholar 

  38. Bourceau, P. et al. Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling. Nat. Protoc. 18, 3050–3079 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Michaluk, P. & Rusakov, D. A. Monitoring cell membrane recycling dynamics of proteins using whole-cell fluorescence recovery after photobleaching of pH-sensitive genetic tags. Nat. Protoc. 17, 3056–3079 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Zeng, X. et al. Design of an HPPD fluorescent probe and visualization of plant responses to abiotic stress. Adv. Agrochem. 1, 73–84 (2022).

    Article  Google Scholar 

  41. Zeng, X. et al. Fluorescence probes for reactive sulfur species in agricultural chemistry. J. Agric. Food Chem. 69, 13700–13712 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Zeng, X. et al. A protocol for activated bioorthogonal fluorescence labeling and imaging of 4-hydroxyphenylpyruvate dioxygenase in plants. Angew. Chem. Int. Ed. 62, e202312618 (2023).

    Article  CAS  Google Scholar 

  43. Li, J., Yim, D., Jang, W.-D. & Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 46, 2437–2458 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Yin, J., Hua, Y. & Yoon, J. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem. Soc. Rev. 44, 4619–4644 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y., Zheng, S., Kim, M. H., Chen, X. & Yoon, J. Recent progress of TP/NIR fluorescent probes for metal ions. Curr. Opin. Chem. Biol. 75, 102321 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Aron, A. T., Ramos-Torres, K. M., Cotruvo, J. A. Jr. & Chang, C. J. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc. Chem. Res. 48, 2434–2442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qiao, M., Ding, L. & Lv, F. Surfactant assemblies encapsulating fluorescent probes as selective and discriminative sensors for metal ions. Coord. Chem. Rev. 432, 213696 (2021).

    Article  CAS  Google Scholar 

  48. Hamilton, G. R. C. et al. Optical probes for the detection of protons, and alkali and alkaline earth metal cations. Chem. Soc. Rev. 44, 4415–4432 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, M. et al. Supramolecularly engineered NIR-II and upconversion nanoparticles in vivo assembly and disassembly to improve bioimaging. Adv. Mater. 30, 1804982 (2018).

    Article  Google Scholar 

  50. Zhao, M., Li, B., Fan, Y. & Zhang, F. In vivo assembly and disassembly of probes to improve near-infrared optical bioimaging. Adv. Healthc. Mater. 8, 1801650 (2019).

    Article  Google Scholar 

  51. Ma, X. et al. The aggregates of near-infrared cyanine dyes in phototherapy. ChemMedChem 18, e202300204 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, W. et al. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles. J. Am. Chem. Soc. 141, 12475–12480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun, C. et al. J-Aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1,500 nm. J. Am. Chem. Soc. 141, 19221–19225 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Wood, C. A. et al. Clinically translatable quantitative molecular photoacoustic imaging with liposome-encapsulated ICG J-aggregates. Nat. Commun. 12, 5410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cao, W. & Sletten, E. M. fluorescent cyanine dye J-aggregates in the fluorous phase. J. Am. Chem. Soc. 140, 2727–2730 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Deng, X. et al. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1,700 nm window. Anal. Chim. Acta 1255, 341118 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Ma, X. Construction and bioimaging application of novel indole heptamethine cyanines containing functionalized tetrahydropyridine rings. J. Mater. Chem. B 8, 9906–9912 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Ma, X. et al. J-Aggregates formed by NaCl treatment of Aza-coating heptamethine cyanines and their application to monitoring salt stress of plants and promoting photothermal therapy of tumors. Angew. Chem. Int. Ed. 62, e202216109 (2023).

    Article  CAS  Google Scholar 

  59. Wu, H. et al. Monitoring plant health with near-infrared fluorescent H2O2 nanosensors. Nano Lett. 20, 2432–2442 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, Z. et al. A visible and near-infrared, dual-channel fluorescence-on probe for selectively tracking mitochondrial glutathione. Chem 7, 1609–1628 (2018).

    Article  Google Scholar 

  61. Liao, Y. et al. Heptamethine cyanines in bioorthogonal chemistry. Chin. Chem. Lett. 35, 109092 (2024).

    Article  CAS  Google Scholar 

  62. Ma, X. et al. Rational design and application of an indolium-derived heptamethine cyanine with record-long second near-infrared emission. CCS Chem. 6, 1961–1976 (2022).

    Article  Google Scholar 

  63. Liang, X., Li, J., Yang, Y., Jiang, C. & Guo, Y. Designing salt stress-resilient crops: current progress and future challenges. J. Integr. Plant Biol. 66, 303–329 (2024).

    Article  PubMed  Google Scholar 

  64. Zhang, Y. et al. Structural basis for the activity regulation of Salt Overly Sensitive 1 in Arabidopsis salt tolerance. Nat. Plants 9, 1915–1923 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, X.-Y. et al. Structure and activation mechanism of the rice Salt Overly Sensitive 1 (SOS1) Na/H antiporter. Nat. Plants 9, 1924–1936 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, G. et al. SOS2 phosphorylates FREE1 during salt stress influencing MVB traffic and ultimately vacuole dynamics. Plant Cell (in the press).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFA1207400), National Natural Science Foundation of China (22274061), the 111 Project (B17019) and Fundamental Research Funds for the Central Universities (CCNU24JCPT030). We would like to thank Y. Guo and G. Liu from China Agricultural University and H. Wu and J. Li from Huazhong Agricultural University for their guidance and assistance.

Author information

Authors and Affiliations

Authors

Contributions

All the experiments were conducted and the manuscript was written by X.M. with the supervision of S.H.L., J.Y. and G.-F.Y. X.Z. and Y.H. contributed to the manuscript writing.

Corresponding authors

Correspondence to Jun Yin or Guang-Fu Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Sergey Shabala and the other, anonymous, reviewer(s) for their contribution to the peer review process of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Ma, X. et al. Angew. Chem. Int. Ed. 62, e202216109 (2023): https://doi.org/10.1002/anie.202216109

Supplementary information

Supplementary Information

Supplementary Figs. 1–36, and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zeng, X., Huang, Y. et al. Visualizing plant salt stress with a NaCl-responsive fluorescent probe. Nat Protoc 20, 902–933 (2025). https://doi.org/10.1038/s41596-024-01068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01068-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing