Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Versatile synthesis of uniform mesoporous superparticles from stable monomicelle units

Abstract

Superstructures with architectural complexity and unique functionalities are promising for a variety of practical applications in many fields, including mechanics, sensing, photonics, catalysis, drug delivery and energy storage/conversion. In the past five years, a number of attempts have been made to build superparticles based on amphiphilic polymeric micelle units, but most have failed owing to their inherent poor stability. Determining how to stabilize micelles and control their superassembly is critical to obtaining the desired mesoporous superparticles. Here we provide a detailed procedure for the preparation of ultrastable polymeric monomicelle building units, the creation of a library of ultrasmall organic–inorganic nanohybrids, the modular superassembly of monomicelles into hierarchical superstructures and creation of novel multilevel mesoporous superstructures. The protocol enables precise control of the number of monomicelle units and the derived mesopores for superparticles. We show that ultrafine nanohybrids display enhanced mechanical antipressure performance compared with pristine polymeric micelles, and describe the functional characterization of mesoporous superstructures that exhibit excellent oxygen reduction reactivity. Except for the time (4.5 d) needed for the preparation of the triblock polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) PS-PVP-PEO or the polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-PAA-PEO) copolymer, the synthesis of the ultrastable monomicelle, ultrafine organic–inorganic nanohybrids, hierarchical superstructures and mesoporous superparticles require ~6, 30, 8 and 24 h, respectively. The time needed for all characterizations and applications are 18 and 10 h, respectively.

Key points

  • This protocol describes the preparation of ultrastable polymeric monomicelle building units, the construction of a library of ultrasmall organic–inorganic nanohybrids, the superassembly of monomicelles into hierarchical superstructures and the generation of multilevel mesoporous superstructures.

  • Compared with pristine polymeric micelles, ultrafine nanohybrids exhibit enhanced mechanical antipressure performance and the mesoporous superstructures exhibit excellent oxygen reduction reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the versatile fabrication process of superstructures based on ultrastable monomicelle superassembly.
Fig. 2: Photographs and corresponding models during the synthesis of ultrastable monomicelles and ultrafine nanohybrids.
Fig. 3: Photographs and corresponding models during the synthesis of the hierarchical superstructures and mesoporous superparticles.
Fig. 4: Detailed schematic illustrations of the entire fabrication process from ultrastable monomicelle formation to ultrafine organic/inorganic nanohybrid formation.
Fig. 5: Characterization of monomicelles and derived ultrafine micelles/SiO2 nanohybrids.
Fig. 6: Dependences of particle sizes and SiO2 shell thickness for the micelle/SiO2 nanohybrids on the molecular weights of the PS-PVP-PEO copolymers.
Fig. 7: Characterization of ultrafine micelles/ZnO nanohybrids.
Fig. 8: The characterization of a library of ultrafine nanohybrids templated by PS-PVP-PEO or PS-PAA-PEO ultrastable monomicelles.
Fig. 9: Dependence of monomicelle size for ‘core–satellites’ SiO2@monomicelles superstructures on molecular weights of the PS-PVP-PEO copolymers.
Fig. 10: Variability of the monomicelle superassembly approach for ‘core–satellites’ and ‘core–satellites–satellites’ superstructures.
Fig. 11: Dependence of mesopore number for the mesoporous carbon superparticles on the added amount of ammonia.
Fig. 12: Physicochemical characterizations of the mesoporous carbon superparticles.
Fig. 13: The mechanical antipressure performance of polymeric PS-PVP-PEO monomicelles and the ultrasmall organic–inorganic micelles/SiO2 nanohybrids.
Fig. 14: ORR performance of the mesoporous carbon superparticles.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Xia, B. et al. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016).

    Article  CAS  Google Scholar 

  3. Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019).

    Article  Google Scholar 

  4. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Carné-Sánchez, A. et al. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013).

    Article  PubMed  Google Scholar 

  6. Kotov, N. et al. Monoparticulate layer and Langmuir–Blodgett-type multiparticulate layers of size-quantized cadmium sulfide clusters: a colloid–chemical approach to superlattice construction. J. Phys. Chem. 98, 2735–2738 (1994).

    Article  CAS  Google Scholar 

  7. Zhao, Z. et al. Ultrafine asymmetric soft/stiff nanohybrids with tunable patchiness via a dynamic surface-mediated assembly. J. Am. Chem. Soc. 146, 20857–20867 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Cao, L. et al. Spherical superstructure of boron nitride nanosheets derived from boron-containing metal–organic frameworks. J. Am. Chem. Soc. 142, 8755–8762 (2020).

    Article  PubMed  Google Scholar 

  9. Wang, J. et al. Ultrasmall inorganic mesoporous nanoparticles: preparation, functionalization, and application. Adv. Mater. 36, e2312374 (2024).

    Article  PubMed  Google Scholar 

  10. Aubert, T., Ma, K., Tan, K. & Wiesner, U. Two-dimensional superstructures of silica cages. Adv. Mater. 32, 1908362 (2020).

    Article  CAS  Google Scholar 

  11. Chao, C. et al. Shape control of soft nanoparticles and their assemblies. Chem. Mater. 29, 1918–1945 (2017).

    Article  Google Scholar 

  12. Goerlitzer, E., Taylor, R. & Vogel, N. Bioinspired photonic pigments from colloidal self‐assembly. Adv. Mater. 30, 1706654 (2018).

    Article  Google Scholar 

  13. He, M. et al. Monodisperse dual‐functional upconversion nanoparticles enabled near‐infrared organolead halide perovskite solar cells. Angew. Chem. Int. Ed. 128, 4352–4356 (2016).

    Article  Google Scholar 

  14. Ren, J. et al. DNA-inspired strand-exchange for switchable pmma-based supramolecular morphologies. J. Am. Chem. Soc. 141, 2630–2635 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arno, M. et al. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 11, 1–9 (2020).

    Article  Google Scholar 

  17. Xu, P. et al. Helical toroids self-assembled from a binary system of polypeptide homopolymer and its block copolymer. Angew. Chem. Int. Ed. 59, 14281–14285 (2020).

    Article  CAS  Google Scholar 

  18. Wong, C. et al. Self-assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 102, 101211 (2020).

    Article  CAS  Google Scholar 

  19. Li, X. et al. From precision synthesis of block copolymers to properties and applications of nanoparticles. Angew. Chem. Int. Ed. 57, 2046–2070 (2018).

    Article  CAS  Google Scholar 

  20. Urata, C. et al. Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Chem. Commun. 34, 5094–5096 (2009).

    Article  Google Scholar 

  21. Lu, F. et al. Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small 5, 1408–1413 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ma, K., Sai, H. & Wiesner, U. Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J. Am. Chem. Soc. 134, 13180–13183 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, S. et al. Directed assembly of hybrid nanomaterials and nanocomposites. Adv. Mater. 30, 1705794 (2018).

    Article  Google Scholar 

  24. Malgras, V. et al. Nanoarchitectures for mesoporous metals. Adv. Mater. 28, 993–1010 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Shiraishi, Y., Saito, N. & Hirai, T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. J. Am. Chem. Soc. 127, 12820–12822 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, G. et al. General formation of macro‐/mesoporous nanoshells from interfacial assembly of irregular mesostructured nanounits. Angew. Chem. Int. Ed. 59, 19663–19668 (2020).

    Article  CAS  Google Scholar 

  27. Peng, L. et al. Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials. Nat. Protoc. 18, 1155–1178 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Tang, J. et al. Hard-sphere packing and icosahedral assembly in the formation of mesoporous materials. J. Am. Chem. Soc. 129, 9044–9048 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, J. et al. Tunable assembly of organosilica hollow nanospheres. J. Phys. Chem. C. 114, 953–961 (2010).

    Article  CAS  Google Scholar 

  30. Mandal, M. et al. Family of single-micelle-templated organosilica hollow nanospheres and nanotubes synthesized through adjustment of organosilica/surfactant ratio. Chem. Mater. 24, 123–132 (2012).

    Article  CAS  Google Scholar 

  31. Zhao, Y. et al. Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chin. J. Struct. 43, 100238 (2024).

    Article  CAS  Google Scholar 

  32. Farid, G. et al. Silica nanotubes with widely adjustable inner diameter and ordered silicas with ultralarge cylindrical mesopores templated by swollen micelles of mixed pluronic triblock copolymers. Chem. Mater. 29, 4675–4681 (2017).

    Article  CAS  Google Scholar 

  33. Chen, H. et al. Asymmetric monolayer mesoporous nanosheets of regularly arranged semi-opened pores via a dual-emulsion-directed micelle assembly. J. Am. Chem. Soc. 145, 27708–27717 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y. et al. A vesicle-aggregation-assembly approach to highly ordered mesoporous γ-alumina microspheres with shifted double-diamond networks. Chem. Sci. 9, 7705–7714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, S., Mou, C. & Lin, H. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42, 3862 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, P. et al. Sub-10 nm corrugated TiO2 nanowire arrays by monomicelle-directed assembly for efficient hole extraction. J. Am. Chem. Soc. 144, 20964–20974 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Bastakoti, B. et al. Polymeric micelle assembly with inorganic nanosheets for construction of mesoporous architectures with crystallized walls. Angew. Chem. Int. Ed. 54, 4222–4225 (2015).

    Article  CAS  Google Scholar 

  38. Lim, H. et al. A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat. Protoc. 15, 2980–3008 (2020).

    Article  PubMed  Google Scholar 

  39. Khanal, A. et al. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core–shell–corona structure. J. Am. Chem. Soc. 129, 1534–1535 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Duan, L. et al. Synthesis of fully exposed single‐atom‐layer metal clusters on 2D ordered mesoporous TiO2 nanosheets. Angew. Chem. Int. Ed. 134, e202211307 (2022).

    Article  Google Scholar 

  41. Li, W., Liu, J. & Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).

    Article  CAS  Google Scholar 

  42. Suteewong, T. et al. Multicompartment mesoporous silica nanoparticles with branched shapes: an epitaxial growth mechanism. Science 340, 337–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Lan, K. et al. Mesoporous TiO2 microspheres with precisely controlled crystallites and architectures. Chem 4, 2436–2450 (2018).

    Article  CAS  Google Scholar 

  45. Duan, L. et al. Interfacial assembly and applications of functional mesoporous materials. Chem. Rev. 121, 14349–14429 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, Y., Goebl, J. & Yin, Y. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Peng, L. et al. Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. Sci. Adv. 7, eabi7403 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, M. et al. Enzyme-based mesoporous nanomotors with near-infrared optical brakes. J. Am. Chem. Soc. 144, 3892–3901 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Lan, K. et al. Confined interfacial monomicelle assembly for precisely controlled coating of single-layered titania mesopores. Matter 1, 527–538 (2019).

    Article  Google Scholar 

  50. Li, C. et al. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 49, 4681–4736 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Guan, B., Yu, L. & Lou, X. Chemically assisted formation of monolayer colloidosomes on functional particles. Adv. Mater. 28, 9596–9601 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Zhao, Z. et al. General synthesis of ultrafine monodispersed hybrid nanoparticles from highly stable monomicelles. Adv. Mater. 33, 2100820 (2021).

    Article  CAS  Google Scholar 

  53. Zhao, Z. et al. Modular super-assembly of hierarchical superstructures from monomicelle building blocks. Sci. Adv. 8, eabo0283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao, Z. et al. Constructing unique mesoporous carbon superstructures via monomicelle interface confined assembly. J. Am. Chem. Soc. 144, 11767–11777 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Jeon, N. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, Y. & Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45, 655 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, L. et al. Precise molecular design toward organic-inorganic zinc chloride ABX3 Ferroelectrics. J. Am. Chem. Soc. 142, 6236 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Wooh, S. et al. Synthesis of mesoporous supraparticles on superamphiphobic surfaces. Adv. Mater. 27, 7338–7343 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Xu, Z. et al. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28, 1981–1987 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, J. et al. Hydrogen-bonded mesoporous frameworks with tunable pore sizes and architectures from nanocluster assembly units. J. Am. Chem. Soc. 146, 17866–17877 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, J. et al. Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34, 2104958 (2022).

    Article  CAS  Google Scholar 

  62. Hu, Q. et al. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2018).

    Article  PubMed  Google Scholar 

  63. Song, Z. et al. Self‐assembled carbon superstructures achieving ultra‐stable and fast proton‐coupled charge storage kinetics. Adv. Mater. 33, 2104148 (2021).

    Article  CAS  Google Scholar 

  64. Zuo, Y. et al. A high‐capacity O2‐type Li‐rich cathode material with a single‐layer Li2MnO3 superstructure. Adv. Mater. 30, 1707255 (2018).

    Article  Google Scholar 

  65. Zhang, B., Lv, X. & An, Z. Modular monomers with tunable solubility: synthesis of highly incompatible block copolymer nano-objects via RAFT aqueous dispersion polymerization. ACS Macro Lett. 6, 224–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Hsu, C. et al. Roughness-dependent tribology effects on discontinuous shear thickening. Proc. Natl Acad. Sci. USA 115, 5117–5122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ozaki, M., Kratohvil, S. & Matijevic, E. Formation of monodispersed spindle-type hematite particles. J. Colloid Interface Sci. 102, 146–151 (1984).

    Article  CAS  Google Scholar 

  68. Zhu, H. et al. Synthesis of monodisperse mesoporous TiO2 nanospheres from a simple double-surfactant assembly-directed method for lithium storage. ACS Appl. Mater. Interfaces 8, 25586–25594 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, J. et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (nos. 2022YFA1503501 (W.L.) and 2018YFA0209401 (D.Z.)), National Nature Science Foundation of China (nos. 22105041 (D.Z.), 21733003 (D.Z.), U21A20329 (W.L.), 51975502 (D.Z.), 21975050 (W.L.), 22365021 (Y.Z.) and 22305132 (Z.Z.)), Program of Shanghai Academic Research Leader (no. 21XD1420800 (W.L.)), Shanghai Pilot Program for Basic Research-Fudan University 21TQ1400100 (no. 21TQ008 (W.L.)) and Science and Technology Commission of Shanghai Municipality (no. 22JC1410200 (D.Z.)), ‘Junma’ Program of Inner Mongolia University (10000-23112101/045 (Z.Z.)), Inner Mongolia Natural Science Foundation Youth Fund (2023QN02014 (Z.Z.)), ‘Young academic talents’ Program of Inner Mongolia University (23600-5233706 (Y.Z.)), Natural Science Basic Research Program of Shaanxi (no. 2023-JC-QN-0498 (Y.X.)), Key Research and Development Plan of Shaanxi (no. 2023-YBGY-173, (Y.X.)) and Science and Technology Plan Project of Xi’an (no. 2022JH-RYFW-0137 (Y.X.)).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., W.L. and D.Z. developed the protocol and co-drafted the manuscript. P.Z., Y.Z., L.W. and J.Z. contributed to the discussion and manuscript modification. F.B., W.Zhou, R.Z., X.Z. and Z.L. analyzed morphologies. Y.L., Y.X., W.Zhang, T.Z. and D.C. did formal analysis. All authors contributed to the manuscript.

Corresponding authors

Correspondence to Zaiwang Zhao, Wei Li or Dongyuan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Zhao, Z. et al. Adv. Mater. 33, 2100820 (2021): https://doi.org/10.1002/adma.202100820

Zhao, Z. et al. Sci. Adv. 8, eabo0283 (2022): https://doi.org/10.1126/sciadv.abo0283

Zhao, Z. et al. J. Am. Chem. Soc. 26, 11767–11777 (2022): https://doi.org/10.1021/jacs.2c03814

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhang, P., Zhao, Y. et al. Versatile synthesis of uniform mesoporous superparticles from stable monomicelle units. Nat Protoc 20, 1310–1351 (2025). https://doi.org/10.1038/s41596-024-01073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01073-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing