Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Visually guided in vivo single-cell electroporation for monitoring and manipulating mammalian hippocampal neurons

Abstract

Sparse, single-cell labeling approaches enable high-resolution, high signal-to-noise recordings from subcellular compartments and intracellular organelles and allow precise manipulations of individual cells and local circuits while minimizing complex changes associated with global network manipulations. However, thus far, only a limited number of approaches have been developed to label single cells with unique combinations of genetically encoded indicators, target deep cortical structures or sustainably use the same chronic preparation for weeks. Here we developed a method to deliver plasmids selectively to single pyramidal neurons in the mouse dorsal hippocampus using two-photon visually guided in vivo single-cell electroporation to address these limitations. This method allows long-term plasmid expression in a controlled number of individual pyramidal neurons, facilitating subcellular resolution imaging, intracellular organelle tracking, monosynaptic input mapping, plasticity induction and targeted whole-cell patch-clamp recordings.

Key points

  • The delivery of plasmids selectively to single pyramidal neurons in the mouse dorsal hippocampus via two-photon visually guided in vivo single-cell electroporation.

  • This method allows long-term plasmid expression in a controlled number of individual pyramidal neurons, facilitating subcellular resolution imaging, intracellular organelle tracking, monosynaptic input mapping, plasticity induction and targeted whole-cell patch-clamp recordings for up to 2 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the experimental setup.
Fig. 2: Cannula, headpost and SCE pipet.
Fig. 3: Surgery.
Fig. 4: SCE circuit and electronics.
Fig. 5: SCE steps.
Fig. 6: SCE applications.

Similar content being viewed by others

Data availability

Further information and requests for resources and reagents should be directed to the lead contact Attila Losonczy (al2856@columbia.edu). All unique resources generated in this study are available from the lead contact with a completed Materials Transfer Agreement.

The authors declare that the main data discussed in this protocol are available in the supporting primary research papers (https://doi.org/10.1016/j.neuron.2021.12.003; https://doi.org/10.1126/science.abm1670; https://doi.org/10.1038/s41586-021-04169-9; https://doi.org/10.1101/2023.10.04.560848; https://doi.org/10.1038/s41467-024-50546-z; https://doi.org/10.1101/2024.02.26.582144; https://doi.org/10.1038/s41467-024-46463-w). The raw datasets are available for research purposes from the corresponding authors upon reasonable request.

References

  1. Haas, K., Sin, W. C., Javaherian, A., Li, Z. & Cline, H. T. Single-cell electroporation for gene transfer in vivo. Neuron 29, 583–591 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Margrie, T. W. et al. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Judkewitz, B., Rizzi, M., Kitamura, K. & Häusser, M. Targeted single-cell electroporation of mammalian neurons in vivo. Nat. Protoc. 4, 862–869 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Wertz, A. et al. Presynaptic networks. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Rolotti, S. V. et al. Local feedback inhibition tightly controls rapid formation of hippocampal place fields. Neuron 110, 783–794.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Hare, J. K. et al. Compartment-specific tuning of dendritic feature selectivity by intracellular Ca2+ release. Science 375, eabm1670 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Geiller, T. et al. Local circuit amplification of spatial selectivity in the hippocampus. Nature 601, 105–109 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez, K. C., Negrean, A., Liao, Z., Polleux, F. & Losonczy, A. Synaptic basis of behavioral timescale plasticity. Preprint at bioRxiv https://doi.org/10.1101/2023.10.04.560848 (2023).

  10. Liao, Z. et al. Functional architecture of intracellular oscillations in hippocampal dendrites. Nat. Commun. 15, 6295 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Hare, J. K., Wang, J., Shala, M. D., Polleux, F. & Losonczy, A. Variable recruitment of distal tuft dendrites shapes new hippocampal place fields. Preprint at bioRxiv https://doi.org/10.1101/2024.02.26.582144 (2024).

  12. Virga, D. M. et al. Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo. Nat. Commun. 15, 2142 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. dal Maschio, M. et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat. Commun. 3, 960 (2012).

    Article  PubMed  Google Scholar 

  14. Blockus, H. et al. Synaptogenic activity of the axon guidance molecule Robo2 underlies hippocampal circuit function. Cell Rep. 37, 109828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14, 388–390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weisenburger, S. et al. Volumetric Ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light microscopy. Cell 177, 1050–1066.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noguchi, A., Huszár, R., Morikawa, S., Buzsáki, G. & Ikegaya, Y. Inhibition allocates spikes during hippocampal ripples. Nat. Commun. 13, 1280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaifosh, P., Lovett-Barron, M., Turi, G. F., Reardon, T. R. & Losonczy, A. Septo-hippocampal GABAergic signaling across multiple modalities in awake mice. Nat. Neurosci. 16, 1182–1184 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Noguchi, A., Ikegaya, Y. & Matsumoto, N. In vivo whole-cell patch-clamp methods: recent technical progress and future perspectives. Sensors 21, 1448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.L. was supported by National Institute of Mental Health (NIMH) grants R01MH124047 and R01MH124867, National Institute of Neurological Disorders and Stroke (NINDS) grants R01NS121106, U01NS115530, R01NS133381 and R01NS131728, and National Institute on Aging grant RF1AG080818. F.P. was supported by NINDS grant R35NS127232 and the Nomis Foundation. K.C.G. was supported by NINDS grant 5T32NS064928-13. A. Noguchi was supported by Overseas Research Fellowships (JSPS) and an HFSP postdoctoral fellowship. J.O.H. was supported by NIMH grant F32MH118716 and NINDS grant K99NS127815.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. Negrean, T.G. and A.L. Methodology: A. Negrean, T.G., J.O.H., K.C.G. and A. Noguchi. Investigation: A. Negrean, T.G., J.O.H. and K.C.G., A. Noguchi, M.S. and S.T. Visualization: K.C.G., A. Noguchi and G.Z. Data curation: K.C.G., A. Noguchi, G.Z. and H.C.Y. Funding acquisition: A.L. Resources: A.L. Project administration: A.L. and F.P Supervision: A.L. and F.P. Writing—original draft: K.C.G., A. Noguchi, G.Z., H.C.Y. and A.L. Writing—review and editing: all authors.

Corresponding author

Correspondence to Attila Losonczy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Kurt Haas and Takafumi Inoue for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Rolotti, S. V. et al. Neuron 110, 783–794.e6 (2022): https://doi.org/10.1016/j.neuron.2021.12.003

O’Hare, J. K. et al. Science 375, eabm1670 2022: https://doi.org/10.1126/science.abm1670

Geiller, T. et al. Nature 601, 105–109 (2022): https://doi.org/10.1038/s41586-021-04169-9

Liao, Z. et al. Nat. Commun. 15, 6295 (2024): https://doi.org/10.1038/s41467-024-50546-z

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, K.C., Noguchi, A., Zakka, G. et al. Visually guided in vivo single-cell electroporation for monitoring and manipulating mammalian hippocampal neurons. Nat Protoc 20, 1468–1484 (2025). https://doi.org/10.1038/s41596-024-01099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01099-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing