Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Consensus guidelines for the use of concurrent TMS-fMRI in cognitive and clinical neuroscience

Abstract

Concurrent transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (TMS-fMRI) provides a step-change in the toolkit of neuroscience research. TMS enables the noninvasive perturbation of ongoing human brain activity, and when coupled to fMRI for the simultaneous read-out of its effects across the brain, concurrent TMS-fMRI enables studies aimed at determining the causal inference of human brain–behavior relationships, with implications for both fundamental research and clinical application. Many of the technical barriers to TMS-fMRI implementation, such as hardware design and setups, have now been overcome, and the research community in the field is rapidly growing. Here, we present the guidelines set by an international consensus, from researchers at all levels and across the fields of cognitive and applied human neuroscience, for the experimental design and practical considerations of concurrent TMS-fMRI via 12 detailed use cases. These guidelines may facilitate the uptake of this approach and simplify the experimental design and planning stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of considerations for concurrent TMS-fMRI experiments.
Fig. 2: Logic of concurrent TMS.
Fig. 3: Example arrangements of TMS and RF head coils in the scanner.
Fig. 4: Monitoring of TMS coil placement during concurrent TMS-fMRI.
Fig. 5: Example circuit diagram for concurrent TMS-fMRI hardware.
Fig. 6: Examples of active control conditions.

Similar content being viewed by others

References

  1. Driver, J., Blankenburg, F., Bestmann, S., Vanduffel, W. & Ruff, C. C. Concurrent brain-stimulation and neuroimaging for studies of cognition. Trends Cogn. Sci. 13, 319–327 (2009).

    Article  PubMed  Google Scholar 

  2. Bergmann, T. O. et al. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neuroimage 237, 118093 (2021).

    Article  PubMed  Google Scholar 

  3. Feredoes, E., Tononi, G. & Postle, B. R. The neural bases of the short-term storage of verbal information are anatomically variable across individuals. J. Neurosci. 27, 11003–11008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sack, A. T. et al. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J. Cogn. Neurosci. 21, 207–221 (2009).

    Article  PubMed  Google Scholar 

  5. Sack, A. T., Kohler, A., Linden, D. E., Goebel, R. & Muckli, L. The temporal characteristics of motion processing in hMT/V5+: combining fMRI and neuronavigated TMS. Neuroimage 29, 1326–1335 (2006).

    Article  PubMed  Google Scholar 

  6. Hebscher, M. & Voss, J. L. Testing network properties of episodic memory using non-invasive brain stimulation. Curr. Opin. Behav. Sci. 32, 35–42 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, J. X. et al. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345, 1054–1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tambini, A., Nee, D. E. & D’Esposito, M. Hippocampal-targeted theta-burst stimulation enhances associative memory formation. J. Cogn. Neurosci. 30, 1452–1472 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beynel, L. et al. Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: a randomized within-subject comparison. PLoS One 14, e0213707 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dave, S., VanHaerents, S., Bonakdarpour, B., Mesulam, M. M. & Voss, J. L. Stimulation of distinct parietal locations differentiates frontal versus hippocampal network involvement in memory formation. Curr. Res. Neurobiol. 3, 100030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dave, S., VanHaerents, S. & Voss, J. L. Cerebellar theta and beta noninvasive stimulation rhythms differentially influence episodic memory versus semantic prediction. J. Neurosci. 40, 7300–7310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hermiller, M. S. et al. Evidence from theta-burst stimulation that age-related de-differentiation of the hippocampal network is functional for episodic memory. Neurobiol. Aging 109, 145–157 (2022).

    Article  PubMed  Google Scholar 

  13. Hermiller, M. S., VanHaerents, S., Raij, T. & Voss, J. L. Frequency-specific noninvasive modulation of memory retrieval and its relationship with hippocampal network connectivity. Hippocampus 29, 595–609 (2019).

    Article  PubMed  Google Scholar 

  14. Eldaief, M. C., Halko, M. A., Buckner, R. L. & Pascual-Leone, A. Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner. Proc. Natl Acad. Sci. USA 108, 21229–21234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gratton, C., Lee, T. G., Nomura, E. M. & D’Esposito, M. The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI. Front. Syst. Neurosci. 7, 124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Friehs, M. A. et al. No effects of 1 Hz offline TMS on performance in the stop-signal game. Sci. Rep. 13, 11565 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Pisapia, N., Barchiesi, G., Jovicich, J. & Cattaneo, L. The role of medial prefrontal cortex in processing emotional self-referential information: a combined TMS/fMRI study. Brain Imaging Behav. 13, 603–614 (2019).

    Article  PubMed  Google Scholar 

  18. Min, Y. S. et al. Neuromodulatory effects of offline low-frequency repetitive transcranial magnetic stimulation of the motor cortex: a functional magnetic resonance imaging study. Sci. Rep. 6, 36058 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petitet, P., Noonan, M. P., Bridge, H., O’Reilly, J. X. & O’Shea, J. Testing the inter-hemispheric competition account of visual extinction with combined TMS/fMRI. Neuropsychologia 74, 63–73 (2015).

    Article  PubMed  Google Scholar 

  20. Hoogendam, J. M., Ramakers, G. M. & Di Lazzaro, V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 3, 95–118 (2010).

    Article  PubMed  Google Scholar 

  21. Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P. & Rothwell, J. C. Theta burst stimulation of the human motor cortex. Neuron 45, 201–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Wischnewski, M. & Schutter, D. J. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 8, 685–692 (2015).

    Article  PubMed  Google Scholar 

  23. Rossi, S. et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 132, 269–306 (2021).

    Article  PubMed  Google Scholar 

  24. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. & Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tik, M. et al. Acute TMS/fMRI response explains offline TMS network effects—An interleaved TMS-fMRI study. Neuroimage 267, 119833 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Tik, M. et al. Concurrent TMS/fMRI reveals individual DLPFC dose-response pattern. Neuroimage 282, 120394 (2023).

    Article  PubMed  Google Scholar 

  27. Rafiei, F. & Rahnev, D. TMS does not increase BOLD activity at the site of stimulation: a review of all concurrent TMS-fMRI studies. eNeuro 9, ENEURO.0163-22.2022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rafiei, F., Safrin, M., Wokke, M. E., Lau, H. & Rahnev, D. Transcranial magnetic stimulation alters multivoxel patterns in the absence of overall activity changes. Hum. Brain Mapp. 42, 3804–3820 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bergmann, T. O. & Hartwigsen, G. Inferring causality from noninvasive brain stimulation in cognitive neuroscience. J. Cogn. Neurosci. 33, 195–225 (2021).

    Article  PubMed  Google Scholar 

  30. Oathes, D. J. et al. Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by interleaved TMS/fMRI. Exp. Brain Res. 239, 1165–1178 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vink, J. J. T. et al. A novel concurrent TMS-fMRI method to reveal propagation patterns of prefrontal magnetic brain stimulation. Hum. Brain Mapp. 39, 4580–4592 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Oathes, D. J. et al. Non-invasively targeting, probing and modulating a deep brain circuit for depression alleviation. Nat. Ment. Health 1, 1033–1042 (2023).

    Article  Google Scholar 

  33. Grosshagauer, S. et al. Chronometric TMS-fMRI of personalized left dorsolateral prefrontal target reveals state-dependency of subgenual anterior cingulate cortex effects. Mol. Psychiatry 29, 2678–2688 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sydnor, V. J. et al. Cortical-subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala. Sci. Adv. 8, eabn5803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hermiller, M. S., Chen, Y. F., Parrish, T. B. & Voss, J. L. Evidence for immediate enhancement of hippocampal memory encoding by network-targeted theta-burst stimulation during concurrent fMRI. J. Neurosci. 40, 7155–7168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C. & Frahm, J. Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage 20, 1685–1696 (2003).

    Article  PubMed  Google Scholar 

  37. Goldenkoff, E. R. et al. The behavioral and neural effects of parietal theta burst stimulation on the grasp network are stronger during a grasping task than at rest. Front. Neurosci. 17, 1198222 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jannati, A., Oberman, L. M., Rotenberg, A. & Pascual-Leone, A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 48, 191–208 (2023).

    Article  PubMed  Google Scholar 

  39. Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res. 133, 425–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Thickbroom, G. W. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp. Brain Res. 180, 583–593 (2007).

    Article  PubMed  Google Scholar 

  41. Hawco, C. et al. Differing time of onset of concurrent TMS-fMRI during associative memory encoding: a measure of dynamic connectivity. Front. Hum. Neurosci. 11, 404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C. & Driver, J. Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proc. Natl Acad. Sci. USA 108, 17510–17515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Janssens, S. E. W., Oever, S. T., Sack, A. T. & de Graaf, T. A. “Broadband Alpha Transcranial Alternating Current Stimulation”: exploring a new biologically calibrated brain stimulation protocol. Neuroimage 253, 119109 (2022).

    Article  PubMed  Google Scholar 

  45. Nelli, S., Itthipuripat, S., Srinivasan, R. & Serences, J. T. Fluctuations in instantaneous frequency predict alpha amplitude during visual perception. Nat. Commun. 8, 2071 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vinck, M. et al. Principles of large-scale neural interactions. Neuron 111, 987–1002 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Dunlop, K. & Nestor, S. Comparing DLPFC 10 Hz and theta burst stimulation using interleaved TMS/fMRI. Brain Stimul. 16, 178 (2023).

    Article  Google Scholar 

  48. Wassermann, E. M. in Oxford Handbook of Transcranial Stimulation (eds. Epstein, C. M., Wassermann, E. M. & Ziemann, U.) 401–408 (Oxford Academic, 2012).

  49. Schilberg, L., Schuhmann, T. & Sack, A. T. Interindividual variability and intraindividual reliability of intermittent theta burst stimulation-induced neuroplasticity mechanisms in the healthy brain. J. Cogn. Neurosci. 29, 1022–1032 (2017).

    Article  PubMed  Google Scholar 

  50. Rocchi, L. et al. Variability and predictors of response to continuous theta burst stimulation: a TMS-EEG study. Front. Neurosci. 12, 400 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bestmann, S. et al. Mapping causal interregional influences with concurrent TMS-fMRI. Exp. Brain Res. 191, 383–402 (2008).

    Article  PubMed  Google Scholar 

  52. Moisa, M., Siebner, H. R., Pohmann, R. & Thielscher, A. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex. J. Neurosci. 32, 7244–7252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sack, A. T. et al. Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb. Cortex 17, 2841–2852 (2007).

    Article  PubMed  Google Scholar 

  54. Ruff, C. C. et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16, 1479–1488 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Ruff, C. C. et al. Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. Cereb. Cortex 18, 817–827 (2008).

    Article  PubMed  Google Scholar 

  56. Blankenburg, F. et al. Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb. Cortex 20, 2702–2711 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heinen, K., Feredoes, E., Weiskopf, N., Ruff, C. C. & Driver, J. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex. Cereb. Cortex 24, 2815–2821 (2014).

    Article  PubMed  Google Scholar 

  58. Peters, J. C. et al. Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity. Commun. Biol. 3, 40 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Silvanto, J. & Pascual-Leone, A. State-dependency of transcranial magnetic stimulation. Brain Topogr. 21, 1–10 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Donse, L., Padberg, F., Sack, A. T., Rush, A. J. & Arns, M. Simultaneous rTMS and psychotherapy in major depressive disorder: clinical outcomes and predictors from a large naturalistic study. Brain Stimul. 11, 337–345 (2018).

    Article  PubMed  Google Scholar 

  61. Neacsiu, A. D. et al. Enhancing cognitive restructuring with concurrent fMRI-guided neurostimulation for emotional dysregulation—A randomized controlled trial. J. Affect. Disord. 301, 378–389 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Neacsiu, A. D. et al. Enhancing cognitive restructuring with concurrent repetitive transcranial magnetic stimulation: a transdiagnostic randomized controlled trial. Psychother. Psychosom. 91, 94–106 (2022).

    Article  PubMed  Google Scholar 

  63. Neacsiu, A. D. et al. On the concurrent use of self-system therapy and functional magnetic resonance imaging-guided transcranial magnetic stimulation as treatment for depression. J. ECT 34, 266–273 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Petrov, P. I. et al. Validating models of TMS effects with concurrent TMS/fMRI. Preprint at https://www.biorxiv.org/content/10.1101/2023.07.05.547836v1 (2023).

  65. Cocchi, L. et al. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics. J. Neurophysiol. 113, 3375–3385 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ge, R. et al. Predictive value of acute neuroplastic response to rTMS in treatment outcome in depression: a concurrent TMS-fMRI trial. Am. J. Psychiatry 179, 500–508 (2022).

    Article  PubMed  Google Scholar 

  67. Fonzo, G. A. et al. Selective effects of psychotherapy on frontopolar cortical function in PTSD. Am. J. Psychiatry 174, 1175–1184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Oathes, D. J. et al. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. Wiley Interdiscip. Rev. Cogn. Sci. 12, e1553 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Baudewig, J., Paulus, W. & Frahm, J. Artifacts caused by transcranial magnetic stimulation coils and EEG electrodes in T2*-weighted echo-planar imaging. Magn. Reson. Imaging 18, 479–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Bestmann, S., Baudewig, J. & Frahm, J. On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging. J. Magn. Reson. Imaging 17, 309–316 (2003).

    Article  PubMed  Google Scholar 

  71. Bohning, D. E. et al. Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport 8, 2535–2538 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Navarro de Lara, L. I. et al. A novel coil array for combined TMS/fMRI experiments at 3 T. Magn. Reson. Med. 74, 1492–1501 (2015).

    Article  PubMed  Google Scholar 

  73. Hassan, U., Pillen, S., Zrenner, C. & Bergmann, T. O. The Brain Electrophysiological recording & STimulation (BEST) toolbox. Brain Stimul. 15, 109–115 (2022).

    Article  PubMed  Google Scholar 

  74. Riddle, J. et al. A guide for concurrent TMS-fMRI to investigate functional brain networks. Front. Hum. Neurosci. 16, 1050605 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mizutani-Tiebel, Y. et al. Concurrent TMS-fMRI: technical challenges, developments, and overview of previous studies. Front. Psychiatry 13, 825205 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bungert, A., Chambers, C. D., Long, E. & Evans, C. J. On the importance of specialized radiofrequency filtering for concurrent TMS/MRI. J. Neurosci. Methods 210, 202–205 (2012).

    Article  PubMed  Google Scholar 

  77. Weiskopf, N. et al. Image artifacts in concurrent transcranial magnetic stimulation (TMS) and fMRI caused by leakage currents: modeling and compensation. J. Magn. Reson. Imaging 29, 1211–1217 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Assem, M., Mada, M., Eldridge, S. & Woolgar, A. The Taco Setup: A Novel TMS-fMRI Setup for High Resolution Whole Brain Imaging. Preprint at https://www.biorxiv.org/content/10.1101/2025.06.14.659622v1 (2025).

  79. Tik, M. Imaging therapeutic brain stimulation: translating technical innovations to inform treatment. In 2nd International Workshop on Concurrent TMS-fMRI (Greece, 2023).

  80. Jackson, J. B., Scrivener, C. L., Mada, M. & Woolgar, A. Comparison of MR coil options for concurrent TMS-fMRI. Preprint at https://www.biorxiv.org/content/10.1101/2024.05.15.594454v1 (2024).

  81. Navarro de Lara, L. I. et al. A novel whole-head RF coil design tailored for concurrent multichannel brain stimulation and imaging at 3T. Brain Stimul. 16, 1021–1031 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dannhauer, M. et al. TAP: targeting and analysis pipeline for optimization and verification of coil placement in transcranial magnetic stimulation. J. Neural Eng. 19, https://doi.org/10.1088/1741-2552/ac63a4 (2022).

  83. Gomez, L. J., Dannhauer, M. & Peterchev, A. V. Fast computational optimization of TMS coil placement for individualized electric field targeting. Neuroimage 228, 117696 (2021).

    Article  PubMed  Google Scholar 

  84. Numssen, O. et al. Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. Neuroimage 245, 118654 (2021).

    Article  PubMed  Google Scholar 

  85. Lueckel, M. et al. Functional connectivity- and E-field-optimized TMS targeting: method development and concurrent TMS-fMRI validation. Brain Stimul. 16, 189 (2023).

    Article  Google Scholar 

  86. Numssen, O., van der Burght, C. L. & Hartwigsen, G. Revisiting the focality of non-invasive brain stimulation—implications for studies of human cognition. Neurosci. Biobehav. Rev. 149, 105154 (2023).

    Article  PubMed  Google Scholar 

  87. Lynch, C. J. et al. Automated optimization of TMS coil placement for personalized functional network engagement. Neuron 110, 3263–3277.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, H. J., Woudsma, K. J., Ishraq, M. F. & Lin, F. H. Design of coil holder for the improved maneuvering in concurrent TMS-MRI. Brain Stimul. 16, 966–968 (2023).

    Article  PubMed  Google Scholar 

  89. Halko, M. A., Eldaief, M. C. & Pascual-Leone, A. Noninvasive brain stimulation in the study of the human visual system. J. Glaucoma 22, S39–S41 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cerins, A. et al. A new angle on transcranial magnetic stimulation coil orientation: a targeted narrative review. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 9, 744–753 (2024).

    PubMed  Google Scholar 

  91. Opitz, A., Fox, M. D., Craddock, R. C., Colcombe, S. & Milham, M. P. An integrated framework for targeting functional networks via transcranial magnetic stimulation. Neuroimage 127, 86–96 (2016).

    Article  PubMed  Google Scholar 

  92. Siebner, H. R. et al. Transcranial magnetic stimulation of the brain: what is stimulated?—A consensus and critical position paper. Clin. Neurophysiol. 140, 59–97 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Goldstein, S., Rafiei, F. & Rahnev, D. 3D-printed stand, timing interface, and coil localization tools for concurrent TMS-fMRI experiments. Brain Stimul. 15, 1290–1291 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sparing, R., Buelte, D., Meister, I. G., Paus, T. & Fink, G. R. Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum. Brain Mapp. 29, 82–96 (2008).

    Article  PubMed  Google Scholar 

  95. Grodzki, D. M., Jakob, P. M. & Heismann, B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn. Reson. Med. 67, 510–518 (2012).

    Article  PubMed  Google Scholar 

  96. Herwig, U. et al. The navigation of transcranial magnetic stimulation. Psychiatry Res. 108, 123–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Windischberger, C., Woletz, M., Grosshagauer, S., Vasileiadi, M. & Tik, M. Neuronavigation-based improvements of concurrent TMS/fMRI studies. Brain Stimul. 16, 193 (2023).

    Article  Google Scholar 

  98. McKeown, M. J., Hansen, L. K. & Sejnowsk, T. J. Independent component analysis of functional MRI: what is signal and what is noise? Curr. Opin. Neurobiol. 13, 620–629 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Windischberger, C., Tik, M., Thielscher, A. & Siebner, H. R. Transcranial brain stimulation and functional MRI. In The Oxford Handbook of Transcranial Stimulation (eds. Wassermann, E. M. et al.) 648–674 (Oxford Academic, 2022).

  100. Bestmann, S., Ruff, C. C., Driver, J. & Blankenburg, F. Concurrent TMS and functional magnetic resonance imaging: methods and current advances. In Oxford Handbook of Transcranial Stimulation (Epstein, C. M., Wassermann, E. M. & Ziemann, U.) 569–592 (Oxford Academic, 2008).

  101. Jackson, J. B., Feredoes, E., Rich, A. N., Lindner, M. & Woolgar, A. Concurrent neuroimaging and neurostimulation reveals a causal role for dlPFC in coding of task-relevant information. Commun. Biol. 4, 588 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bestmann, S. et al. Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb. Cortex 18, 1281–1291 (2008).

    Article  PubMed  Google Scholar 

  103. Bohning, D. E. et al. Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest. Radiol. 33, 336–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Scrivener, C. L., Jackson, J. B., Correia, M. M., Mada, M. & Woolgar, A. Now you see it, now you don’t: optimal parameters for interslice stimulation in concurrent TMS-fMRI. Preprint at https://www.biorxiv.org/content/10.1101/2021.05.28.446111v1 (2021).

  105. Moisa, M., Pohmann, R., Uludag, K. & Thielscher, A. Interleaved TMS/CASL: comparison of different rTMS protocols. Neuroimage 49, 612–620 (2010).

    Article  PubMed  Google Scholar 

  106. Valero-Cabre, A., Amengual, J. L., Stengel, C., Pascual-Leone, A. & Coubard, O. A. Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights. Neurosci. Biobehav. Rev. 83, 381–404 (2017).

    Article  PubMed  Google Scholar 

  107. Habibollahi Saatlou, F. et al. MAGIC: an open-source MATLAB toolbox for external control of transcranial magnetic stimulation devices. Brain Stimul. 11, 1189–1191 (2018).

    Article  PubMed  Google Scholar 

  108. Klooster, D. C. W., Ferguson, M. A., Boon, P. & Baeken, C. Personalizing repetitive transcranial magnetic stimulation parameters for depression treatment using multimodal neuroimaging. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 536–545 (2022).

    PubMed  Google Scholar 

  109. Turi, Z., Lenz, M., Paulus, W., Mittner, M. & Vlachos, A. Selecting stimulation intensity in repetitive transcranial magnetic stimulation studies: a systematic review between 1991 and 2020. Eur. J. Neurosci. 53, 3404–3415 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Stokes, M. G. et al. Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J. Neurophysiol. 94, 4520–4527 (2005).

    Article  PubMed  Google Scholar 

  111. Caulfield, K. A., Li, X. & George, M. S. Four electric field modeling methods of Dosing Prefrontal Transcranial Magnetic Stimulation (TMS): introducing APEX MT dosimetry. Brain Stimul. 14, 1032–1034 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Numssen, O., Kuhnke, P., Weise, K. & Hartwigsen, G. Electric-field-based dosing for TMS. Imaging Neurosci. (Camb.) 2, 1–12 (2024).

    Article  Google Scholar 

  113. Nee, D. E. fMRI replicability depends upon sufficient individual-level data. Commun. Biol. 2, 130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hawco, C., Steeves, J. K. E., Voineskos, A. N., Blumberger, D. M. & Daskalakis, Z. J. Within-subject reliability of concurrent TMS-fMRI during a single session. Psychophysiology 60, e14252 (2023).

    Article  PubMed  Google Scholar 

  115. Peters, J. C. et al. On the feasibility of concurrent human TMS-EEG-fMRI measurements. J. Neurophysiol. 109, 1214–1227 (2013).

    Article  PubMed  Google Scholar 

  116. Duecker, F. & Sack, A. T. Rethinking the role of sham TMS. Front. Psychol. 6, 210 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Duecker, F. & Sack, A. T. Pre-stimulus sham TMS facilitates target detection. PLoS One 8, e57765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A. & Siebner, H. R. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140, 4–19 (2016).

    Article  PubMed  Google Scholar 

  119. Heinen, K. et al. Concurrent TMS-fMRI reveals dynamic interhemispheric influences of the right parietal cortex during exogenously cued visuospatial attention. Eur. J. Neurosci. 33, 991–1000 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Leitao, J., Thielscher, A., Tunnerhoff, J. & Noppeney, U. Concurrent TMS-fMRI reveals interactions between dorsal and ventral attentional systems. J. Neurosci. 35, 11445–11457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schwarzkopf, D. S., Silvanto, J. & Rees, G. Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. J. Neurosci. 31, 3143–3147 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Giustiniani, A. et al. A questionnaire to collect unintended effects of transcranial magnetic stimulation: a consensus based approach. Clin. Neurophysiol. 141, 101–108 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C. & Frahm, J. BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28, 22–29 (2005).

    Article  PubMed  Google Scholar 

  124. O’Shea, J., Johansen-Berg, H., Trief, D., Gobel, S. & Rushworth, M. F. Functionally specific reorganization in human premotor cortex. Neuron 54, 479–490 (2007).

    Article  PubMed  Google Scholar 

  125. Hartwigsen, G. et al. Rapid short-term reorganization in the language network. eLife 6, e25964 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jung, J., Bungert, A., Bowtell, R. & Jackson, S. R. Vertex stimulation as a control site for transcranial magnetic stimulation: a concurrent TMS/fMRI study. Brain Stimul. 9, 58–64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Leitao, J., Thielscher, A., Tuennerhoff, J. & Noppeney, U. Comparing TMS perturbations to occipital and parietal cortices in concurrent TMS-fMRI studies—methodological considerations. PLoS One 12, e0181438 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. de Graaf, T. A., Jacobs, C., Roebroeck, A. & Sack, A. T. FMRI effective connectivity and TMS chronometry: complementary accounts of causality in the visuospatial judgment network. PLoS One 4, e8307 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bradley, C., Nydam, A. S., Dux, P. E. & Mattingley, J. B. State-dependent effects of neural stimulation on brain function and cognition. Nat. Rev. Neurosci. 23, 459–475 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Terney, D., Chaieb, L., Moliadze, V., Antal, A. & Paulus, W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 28, 14147–14155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Allen, E. A., Pasley, B. N., Duong, T. & Freeman, R. D. Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317, 1918–1921 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Manohar, S., Whyte, C., Feredoes, E. & Woolgar, A. An architecture for zero-shot decision-making using plastic attractors. In Conference on Cognitive Computational Neuroscience, P-2B.119, 1333 (Oxford, 2023).

  134. Coalson, T. S., Van Essen, D. C. & Glasser, M. F. The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc. Natl Acad. Sci. USA 115, E6356–E6365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hawco, C. et al. Spread of activity following TMS is related to intrinsic resting connectivity to the salience network: a concurrent TMS-fMRI study. Cortex 108, 160–172 (2018).

    Article  PubMed  Google Scholar 

  137. Navarro de Lara, L. I. et al. High-sensitivity TMS/fMRI of the human motor cortex using a dedicated multichannel MR coil. Neuroimage 150, 262–269 (2017).

    Article  PubMed  Google Scholar 

  138. Chang, K. Y. et al. Neural response during prefrontal theta burst stimulation: interleaved TMS-fMRI of full iTBS protocols. Neuroimage 291, 120596 (2024).

    Article  PubMed  Google Scholar 

  139. Burke, M. et al. Improving coil setup and data processing strategies for concurrent (f)MRI and brain-stimulation studies. In Proceedings of the International Society for Magnetic Resonance in Medicine (Singapore, 2024).

Download references

Acknowledgements

This work was funded by a wide range of sources including salary and project support to the authors. These include UKRI MRC intramural funding (SUAG/093/G116768) and UKRI MRC Promote Units as National Assets Award (MC_PC_20046) to A.W.; a UKRI BBSRC grant (BB/S019170/1) to A.W. and M.M.C; a NWO-OC grant (406.20.GO.004) from the Dutch Research Council (NWO) to A.T.S.; research grants by the Deutsche Forschungsgemeinschaft (DFG (German Research Foundation) No. 525127358 and No. 525176435 to T.O.B. and HA 6314/4-2 and HA 6314/10-1 to G.H.); and the European Research Council (ERC-2021-COG 101043747) to G.H.; National Institutes of Health grants (R61 MH135428 and R01 MH120811) and funding from the Hart Fund in Cognitive Neuroscience and New Venture Fund/The Foundation for OCD Research to D.J.O.; Lise Meitner Excellence Funding by the Max Planck Society to G.H.; an Early Career Research Award from the Centre for Integrative Neuroscience Discovery, University of Cambridge to M.A.; funding from the Austrian Science Fund (P33180), Austrian Ministry for Science and Education (103HSK02) and European Commission (612022) to C.W.; the Federal Ministry of Education and Research (BMBF, grant no. 01GQ2201) supporting O.N.; funding from the NIMH Intramural Research Program (ZIAMH002955) supporting L.B. and B.L.; and funding from the Lundbeck Foundation (grants R313-2019-622 and R244-2017-196) and the Innovation Fund Denmark (Grand Solutions grant 9068-00025B) supporting A.T. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

This work arises from a series of consensus discussion meetings held over 3 days at an international workshop on TMS-fMRI organized by E.F., A.W., C.W. and M.T. in Greece in May–June 2023. The writing of this consensus paper was led by A.W., E.F., M.S.H. and A.T.S. A.W., E.F., M.A., Y.B., M.B., R.F.H.C., R.M.C., G.H., J.B.J., M.K., B.L., M.L., E.M., O.N., D.J.O., A.C.R., T.S., C.L.S., Y.T., M.V., C.W., M.S.H. and A.T.S. conceived the work. A.W., E.F., M.A., Y.B., L.B., R.M.C., G.H., J.B.J., M.K., P.K., O.L., M.L., C.M., E.M., O.N., D.J.O., C.L.S., M.S.H. and A.T.S. wrote the original draft. A.W., E.F., M.A., Y.B., T.O.B., M.B., R.F.H.C., M.M.C., E.G., G.H., J.B.J., M.K., B.L., M.L., E.M., O.N., D.J.O., A.-L.S., A.T., M.T., Y.T., M.V., C.W., M.S.H. and A.T.S. reviewed and edited the manuscript. A.W., E.F., M.A., Y.B., M.B., R.M.C., M.L., D.J.O. and M.S.H. visualized the work. A.W., E.F., M.S.H. and A.T.S. supervised the work. A.W. provided project administration.

Corresponding author

Correspondence to Alexandra Woolgar.

Ethics declarations

Competing interests

A.T.S. is Chief Scientific Advisor of PlatoScience Medical and Alpha Brain Technologies, Chief Executive Officer of Neurowear Medical and Director of the Clinical TMS Certification Course (www.tmscourse.eu) and received equipment support from MagVenture, MagStim and Deymed. C.W. is a member of the scientific advisory board of Brightmind.AI GmbH and a shareholder of ALSIX GmbH, supplier of tailored MR hardware. P.K. is employed by Localite GmbH, manufacturer of TMS neuronavigation devices. M.K., C.M. and Y.T. are employees of MagVenture, suppliers of TMS-fMRI solutions. R.M.C. is an employee of Rogue Research Solutions, supplier of TMS neuronavigation devices.

Peer review

Peer review information

Nature Protocols thanks Jeyoung Jung and Kevin Caulfield for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woolgar, A., Feredoes, E., Assem, M. et al. Consensus guidelines for the use of concurrent TMS-fMRI in cognitive and clinical neuroscience. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01182-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing