Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Hybridization chain reaction-based DNA nanoframeworks for biosensing and therapeutic applications

Abstract

Artificial DNA nanostructures, with their sequence programmability, precise molecular recognition and tunable stimuli responsiveness, bridge material chemistry and biomedicine. Here we detail the design and construction of hybridization chain reaction (HCR)-based DNA nanoframeworks, a class of DNA nanostructures with programmable sequences and customizable functions. HCR is an efficient, enzyme-free amplification strategy that isothermally produces nicked double-stranded DNA with periodically repeated modules via the assembly of two DNA hairpins, triggered by a DNA initiator. In contrast to other available assembly methods for the synthesis of DNA nanostructures, such as tile-mediated assembly, DNA origami and rolling circle amplification, the HCR method offers improved stability and efficiency under mild conditions, without reliance on enzymatic activity. The procedure uses radical polymerization to integrate DNA initiator into nanoframeworks, with overhangs complementary to functional sequences — termed linkers —which are amplified and incorporated through HCR. The linkers enable the incorporation of functional nucleic acid sequences. The HCR-based DNA nanoframeworks facilitate the loading capability of the delivered molecules, showing notable therapeutic efficacy and biosensing sensitivity. Preparation time for HCR-based DNA nanoframeworks ranges from 30 h to 45 h, depending on the payload.

Key points

  • The procedure covers the design and preparation of the nanoframeworks, the loading of functional nucleic acid sequences via hybridization chain reaction and their characterization, followed by their evaluation as therapeutics and as biosensors.

  • Th procedure uses an enzyme-free isothermal amplification-based self-assembly approach with mild reaction conditions and high amplification efficiency, which is easy to implement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of HCR-based DNA nanoframeworks for therapeutic and biosensing applications.
Fig. 2: Oligonucleotides loading (miRNA/siRNA) for gene silencing.
Fig. 3: Cas9 RNP loading for gene editing.
Fig. 4: mRNA loading for mRNA-based therapeutics.
Fig. 5: The controlled drug release of DNA nanoframeworks.
Fig. 6: DNA nanoframeworks enabling lysosome biosensing.
Fig. 7: DNA nanoframeworks enabling mitochondria biosensing.
Fig. 8: Characterization of HCR-based DNA nanoframework.

Similar content being viewed by others

Data availability

The main data supporting the examples of this protocol are available in the supporting primary research papers (https://doi.org/10.1038/s41467-021-21442-7, https://doi.org/10.1126/sciadv.adi3602, https://doi.org/10.1002/adma.202300823, https://doi.org/10.1002/anie.202207770, https://doi.org/10.1002/adfm.202312880). Additional data are available from the corresponding author upon reasonable request.

References

  1. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Kallenbach, N. R., Ma, R.-I. & Seeman, N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983).

    Article  CAS  Google Scholar 

  3. Madsen, M. & Gothelf, K. V. Chemistries for DNA nanotechnology. Chem. Rev. 119, 6384–6458 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Li, Q. et al. A poly(thymine)-melamine duplex for the assembly of DNA nanomaterials. Nat. Mater. 19, 1012–1018 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu, C. H. & Willner, I. Stimuli-responsive DNA-functionalized nano-/microcontainers for switchable and controlled release. Angew. Chem. Int. Ed. 54, 12212–12235 (2015).

    Article  CAS  Google Scholar 

  6. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  Google Scholar 

  7. Kwak, M. & Herrmann, A. Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chem. Soc. Rev. 40, 5745–5755 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Rossi-Gendron, C. et al. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures. Nat. Nanotechnol. 18, 1311–1318 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao, C. et al. A DNA nanocomplex containing cascade DNAzymes and promoter-like Zn-Mn-Ferrite for combined gene/chemo-dynamic therapy. Angew. Chem. Int. Ed. 61, e202113619 (2022).

    Article  CAS  Google Scholar 

  11. Guo, X. et al. Gene circuit compartment on nanointerface facilitatating cascade gene expression. J. Am. Chem. Soc. 141, 19171–19177 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Simmel, F. C., Yurke, B. & Singh, H. R. Principles and applications of nucleic acid strand displacement reactions. Chem. Rev. 119, 6326–6369 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Li, F. et al. Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA delivery. Nat. Commun. 12, 1138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bi, S., Yue, S. & Zhang, S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev. 46, 4281–4298 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y. J., Groves, B., Muscat, R. A. & Seelig, G. DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Belmont, P., Constant, J. F. & Demeunynck, M. Nucleic acid conformation diversity: from structure to function and regulation. Chem. Soc. Rev. 30, 70–81 (2001).

    Article  CAS  Google Scholar 

  17. Chagri, S., Ng, D. Y. W. & Weil, T. Designing bioresponsive nanomaterials for intracellular self-assembly. Nat. Rev. Chem. 6, 320–338 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Keller, A. & Linko, V. Challenges and perspectives of DNA nanostructures in biomedicine. Angew. Chem. Int. Ed. 59, 15818–15833 (2020).

    Article  CAS  Google Scholar 

  19. Li, F. et al. Supramolecular self-assembled DNA nanosystem for synergistic chemical and gene regulations on cancer cells. Angew. Chem. Int. Ed. 60, 25557–25566 (2021).

    Article  CAS  Google Scholar 

  20. Lv, Z. et al. A smart DNA nanoassembly containing multivalent aptamers enables controlled delivery of CRISPR–Cas9 for cancer immunotherapy. Adv. Funct. Mater. 34, 2311069 (2023).

    Article  Google Scholar 

  21. Song, N. et al. Cascade dynamic assembly/disassembly of DNA nanoframework enabling the controlled delivery of CRISPR–Cas9 system. Sci. Adv. 9, eadi3602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lv, Z. et al. A smart DNA-based nanosystem containing ribosome-regulating siRNA for enhanced mRNA transfection. Adv. Mater. 35, e2300823 (2023).

    Article  PubMed  Google Scholar 

  23. Yuan, M. et al. Controlled sequential assembly of DNA nanoparticles inside cells enabling mitochondrial interference. Adv. Funct. Mater. 34, 2312880 (2023).

    Article  Google Scholar 

  24. Dong, Y. et al. Lysosome interference enabled by proton-driven dynamic assembly of DNA nanoframeworks inside cells. Angew. Chem. Int. Ed. 61, e202207770 (2022).

    Article  CAS  Google Scholar 

  25. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics-challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Article  PubMed  Google Scholar 

  28. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He, L. et al. mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells. J. Am. Chem. Soc. 140, 258–263 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, P., Deng, H., Zhou, Y. & Chen, X. The roles of polymers in mRNA delivery. Matter 5, 1670–1699 (2022).

    Article  CAS  Google Scholar 

  34. Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Xiao, M. et al. Rationally engineered nucleic acid architectures for biosensing applications. Chem. Rev. 119, 11631–11717 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Guo, Y. et al. Telomerase-mediated self-assembly of DNA network in cancer cells enabling mitochondrial interference. J. Am. Chem. Soc. 145, 23859–23873 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Li, F. et al. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference. J. Am. Chem. Soc. 144, 4667–4677 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, J., Li, Z., Shao, Y., Hu, W. & Li, L. Spatially selective imaging of mitochondrial microRNAs via optically programmable strand displacement reactions. Angew. Chem. Int. Ed. 60, 17937–17941 (2021).

    Article  CAS  Google Scholar 

  39. Fu, J., Liu, M., Liu, Y. & Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res. 45, 1215–1226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, J. et al. A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors. Angew. Chem. Int. Ed. 57, 15486–15490 (2018).

    Article  CAS  Google Scholar 

  41. Mao, D. et al. An intelligent DNA nanoreactor for easy-to-read in vivo tumor imaging and precise therapy. Angew. Chem. Int. Ed. 63, e202311309 (2024).

    Article  CAS  Google Scholar 

  42. Dong, Y. et al. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev. 120, 9420–9481 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Dey, S. et al. DNA origami. Nat. Rev. Methods Primers 1, 13 (2021).

    Article  Google Scholar 

  44. Ali, M. M. et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 43, 3324–3341 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Y., Nguyen, K., Spitale, R. C. & Chaput, J. C. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem. 13, 319–326 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Faiad, S. et al. Impact of the core chemistry of self‐assembled spherical nucleic acids on their in vitro fate. Angew. Chem. Int. Ed. 62, e202315768 (2023).

    Article  CAS  Google Scholar 

  47. Qin, B. et al. Enzymatic synthesis of TNA protects DNA nanostructures. Angew. Chem. Int. Ed. 63, e202317334 (2024).

    Article  CAS  Google Scholar 

  48. Tang, J. et al. A DNA/poly-(l-lysine) hydrogel with long shelf-time for 3D cell culture. Small Methods 8, 2301236 (2024).

    Article  CAS  Google Scholar 

  49. Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Venkataraman, S., Dirks, R. M., Rothemund, P. W. K., Winfree, E. & Pierce, N. A. An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotechnol. 2, 490–494 (2007).

    Article  PubMed  Google Scholar 

  51. Lv, Z. et al. Hybridization chain reaction-based DNA nanomaterials for biosensing, bioimaging and therapeutics. Chin. Chem. Lett. 35, 108601 (2024).

    Article  CAS  Google Scholar 

  52. Weng, Y. et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Wan, T. et al. Material solutions for delivery of CRISPR/Cas-based genome editing tools: current status and future outlook. Mater. Today 26, 40–66 (2019).

    Article  CAS  Google Scholar 

  54. Guo, Y. et al. Evaluation of pharmacokinetics, immunogenicity, and immunotoxicity of DNA tetrahedral and DNA polymeric nanostructures. Small Methods, 2401007 (2024).

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant nos. 22225505, 22322407 and 22174097). D.Y. thanks Fudan University Ruiqing Education Funding.

Author information

Authors and Affiliations

Authors

Contributions

D.Y. and C.Y. supervised the projects. Z.L. and P.L. designed and conducted the experiments. Z.L., P.L. and M.L analyzed the data. Z.L., P.L., M.L, C.Y. and D.Y. wrote the manuscript.

Corresponding authors

Correspondence to Chi Yao or Dayong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Jong Bum Lee, Veikko Linko, Chengde Mao, Simona Ranallo and Olavi Reinsalu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Li, F. et al. Nat. Commun. 12, 1138 (2021): https://doi.org/10.1038/s41467-021-21442-7

Song, N. et al. Sci. Adv. 9, eadi3602 (2023): https://doi.org/10.1126/sciadv.adi3602

Lv, Z. et al. Adv. Mater. 35, e2300823 (2023): https://doi.org/10.1002/adma.202300823

Dong, Y. et al. Angew. Chem. Int. Ed. 61, e202207770 (2022): https://doi.org/10.1002/anie.202207770

Yuan, M. et al. Adv. Funct. Mater. 34, 2312880 (2023): https://doi.org/10.1002/adfm.202312880

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Li, P., Liu, M. et al. Hybridization chain reaction-based DNA nanoframeworks for biosensing and therapeutic applications. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01183-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing