Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

High-spatial-resolution mass spectrometry imaging of biological tissues using a microfluidic probe

Abstract

Nanospray desorption electrospray ionization (nano-DESI) is a liquid extraction-based ambient ionization mass spectrometry imaging (MSI) technique that enables quantitative molecular mapping of biological samples in their native state with high spatial resolution. To facilitate the wider adoption of nano-DESI MSI by the scientific community, we have developed a robust and user-friendly microfluidic probe (MFP). The probe has been used to achieve high spatial resolution of 8–10 µm and up to 10-fold improvement in the experimental throughput, enabling imaging of large tissue sections with cellular resolution. Here, we provide detailed instructions for designing, fabricating and operating MFPs. In addition, we describe a complete workflow for nano-DESI MSI, covering every step from probe assembly to data acquisition and analysis. Although the fabrication of MFPs requires expertise in microfluidics and can take a few days, the process can be outsourced to qualified companies for manufacturing. Once the MFP is fabricated, the entire imaging workflow can be completed in several hours, depending on the sample size. For example, a sample with an area of 1 cm² can be analyzed in <10 h at a spatial resolution of 10 µm. The exceptional performance and ease of use of these probes will make high-resolution nano-DESI MSI more accessible to the scientific community.

Key points

  • This protocol covers the fabrication of the microfluidic probe via photolithography and selective laser-assisted etching, its assembly, and the nano-DESI MSI experiments for imaging different types of tissue.

  • An alternative method is matrix-assisted laser desorption/ionization (MALDI) that shows poor fragmentation of singly charged protein ions. DESI is an ambient ionization method that generates multiply charged protein ions, facilitating protein identification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Setup of nano-DESI probes.
Fig. 2: Schematic illustrating the fabrication process of the MFP using photolithography.
Fig. 3: Schematic of the SLE-MFP.
Fig. 4: Effects of grinding and polishing on the shape of the MFP.
Fig. 5: Setup for polishing the SLE-MFP and assembling it with an external glass capillary.
Fig. 6: Examples of MFP holders.
Fig. 7: Optical image and representative positive- and negative-mode ion images of molecules in human pancreatic tissue acquired using the iMFP.
Fig. 8: Optical image and representative positive-mode ion images of molecules in mouse brain tissue acquired using the SLE-MFP.

Similar content being viewed by others

Data availability

The data presented in this study are available from the corresponding author upon reasonable request.

Code availability

The LabVIEW programs are available upon request. The MSIGen program can be accessed through GitHub at https://github.com/LabLaskin/MSIGen.

References

  1. Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Norris, J. L. & Caprioli, R. M. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113, 2309–2342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chughtai, K. & Heeren, R. M. A. Mass spectrometric imaging for biomedical tissue analysis. Chem. Rev. 110, 3237–3277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, C., Dill, A. L., Eberlin, L. S., Cooks, R. G. & Ifa, D. R. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32, 218–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Lanni, E. J., Rubakhin, S. S. & Sweedler, J. V. Mass spectrometry imaging and profiling of single cells. J. Proteom. 75, 5036–5051 (2012).

    Article  CAS  Google Scholar 

  6. Boxer, S. G., Kraft, M. L. & Weber, P. K. Advances in imaging secondary ion mass spectrometry for biological samples. Annu. Rev. Biophys. 38, 53–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Römpp, A. & Spengler, B. Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 139, 759–783 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prideaux, B. & Stoeckli, M. Mass spectrometry imaging for drug distribution studies. J. Proteom. 75, 4999–5013 (2012).

    Article  CAS  Google Scholar 

  9. Watrous, J. D. & Dorrestein, P. C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaysse, P. M., Heeren, R. M. A., Porta, T. & Balluff, B. Mass spectrometry imaging for clinical research—latest developments, applications, and current limitations. Analyst 142, 2690–2712 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Chung, H., Huang, P., Chen, C., Lee, C. & Hsu, C. Next‐generation pathology practices with mass spectrometry imaging. Mass Spectrom. Rev. 42, 2446–2465 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Holbrook, J. H., Kemper, G. E. & Hummon, A. B. Quantitative mass spectrometry imaging: therapeutics & biomolecules. Chem. Commun. (Camb.) 60, 2137–2151 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. de Rond, T., Danielewicz, M. & Northen, T. High throughput screening of enzyme activity with mass spectrometry imaging. Curr. Opin. Biotechnol. 31, 1–9 (2015).

    Article  PubMed  Google Scholar 

  14. Taira, S., Uematsu, K., Kaneko, D. & Katano, H. Mass spectrometry imaging: applications to food science. Anal. Sci. 30, 197–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Wiseman, J. M., Ifa, D. R., Song, Q. & Cooks, R. G. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. 45, 7188–7192 (2006).

    Article  CAS  Google Scholar 

  17. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Laskin, J., Heath, B. S., Roach, P. J., Cazares, L. & Semmes, O. J. Tissue imaging using nanospray desorption electrospray ionization sass Spectrometry. Anal. Chem. 84, 141–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Sampson, J. S., Hawkridge, A. M. & Muddiman, D. C. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1712–1716 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, Q., Guo, Z. & He, L. Mass spectrometry imaging of small molecules using desorption/ionization on silicon. Anal. Chem. 79, 3535–3541 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Roach, P. J., Laskin, J. & Laskin, A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135, 2233–2236 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, M. et al. Nano-DESI mass spectrometry imaging of proteoforms in biological tissues with high spatial resolution. Anal. Chem. 95, 5214–5222 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Unsihuay, D. et al. High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry. Anal. Chim. Acta 1186, 339085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, X. et al. High-throughput Nano-DESI mass spectrometry imaging of biological tissues using an integrated microfluidic probe. Anal. Chem. 94, 9690–9696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huffstutler, C. D. et al. Multiple selected ion monitoring mode for sensitive imaging of eicosanoids in tissues using nanospray desorption electrospray ionization (nano-DESI) mass spectrometry. Int. J. Mass Spectrom. 491, 117101 (2023).

    Article  CAS  Google Scholar 

  27. Unsihuay, D. et al. Imaging and analysis of isomeric unsaturated lipids through online photochemical derivatization of carbon-carbon double bonds. Angew. Chem. Int. Ed. 60, 7559–7563 (2021).

    Article  CAS  Google Scholar 

  28. Hale, O. J. & Cooper, H. J. Native mass spectrometry imaging of proteins and protein complexes by Nano-DESI. Anal. Chem. 93, 4619–4627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lillja, J. & Lanekoff, I. Quantitative determination of sn-positional phospholipid isomers in MSn using silver cationization. Anal. Bioanal. Chem. 414, 7473–7482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iqfath, M., Wali, S. N., Amer, S., Hernly, E. & Laskin, J. Nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI): a tutorial review. ACS Meas. Sci. Au 4, 475–487 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin, R., Burnum-Johnson, K. E., Sun, X., Dey, S. K. & Laskin, J. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat. Protoc. 14, 3445–3470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, X. et al. An integrated microfluidic probe for mass spectrometry imaging of biological samples. Angew. Chem. Int. Ed. 59, 22388–22391 (2020).

    Article  CAS  Google Scholar 

  33. Li, X., Hu, H. & Laskin, J. High-resolution integrated microfluidic probe for mass spectrometry imaging of biological tissues. Anal. Chim. Acta 1279, 341830 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, L. X. et al. A monolithic microfluidic probe for ambient mass spectrometry imaging of biological tissues. Lab Chip 23, 4664–4673 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weigand, M. R. et al. Lipid isobar and isomer imaging using nanospray desorption electrospray ionization combined with triple quadrupole mass spectrometry. Anal. Chem. 96, 2975–2982 (2024).

    CAS  Google Scholar 

  36. Duncan, K. D. & Lanekoff, I. Spatially defined surface sampling capillary electrophoresis mass spectrometry. Anal. Chem. 91, 7819–7827 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, L.-X. et al. Nanospray desorption electrospray ionization (Nano-DESI) mass spectrometry imaging with high ion mobility resolution. J. Am. Soc. Mass Spectrom. 34, 1798–1804 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duncan, K. D. et al. Quantitative mass spectrometry imaging of prostaglandins as silver ion adducts with nanospray desorption electrospray ionization. Anal. Chem. 90, 7246–7252 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weigand, M. R., Yang, M., Hu, H., Zensho, C. & Laskin, J. Enhancement of lipid signals with ammonium fluoride in negative mode Nano-DESI mass spectrometry imaging. Int. J. Mass Spectrom. 478, 116859 (2022).

    Article  CAS  Google Scholar 

  40. Mavroudakis, L. & Lanekoff, I. Identification and imaging of prostaglandin isomers utilizing MS3 product ions and silver cationization. J. Am. Soc. Mass Spectrom. 34, 2341–2349 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soltwisch, J. et al. MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument for rapid mass spectrometry imaging and ion mobility separation of complex lipid profiles. Anal. Chem. 92, 8697–8703 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Kompauer, M., Heiles, S. & Spengler, B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat. Methods 14, 1156–1158 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Kompauer, M., Heiles, S. & Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14, 90–96 (2016).

    Article  PubMed  Google Scholar 

  44. Niehaus, M., Soltwisch, J., Belov, M. E. & Dreisewerd, K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 16, 925–931 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Prentice, B. M. Imaging with mass spectrometry: which ionization technique is best? J. Mass Spectrom. 59, e5016 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Ryan, D. J., Spraggins, J. M. & Caprioli, R. M. Protein identification strategies in MALDI imaging mass spectrometry: a brief review. Curr. Opin. Chem. Biol. 48, 64–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Slijkhuis, N. et al. Identifying lipid traces of atherogenic mechanisms in human carotid plaque. Atherosclerosis 385, 117340 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Duncan, K. D. & Lanekoff, I. Oversampling to improve spatial resolution for liquid extraction mass spectrometry imaging. Anal. Chem. 90, 2451–2455 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Weigand, M. R. et al. Imaging of N-linked glycans in biological tissue sections using nanospray desorption electrospray ionization (nano-DESI) mass spectrometry. J. Am. Soc. Mass Spectrom. 34, 2481–2490 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen, S. N. et al. Towards high-resolution tissue imaging using nanospray desorption electrospray ionization mass spectrometry coupled to shear force microscopy. J. Am. Soc. Mass Spectrom. 29, 316–322 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen, S. N., Liyu, A. V., Chu, R. K., Anderton, C. R. & Laskin, J. Constant-distance mode nanospray desorption electrospray ionization mass spectrometry imaging of biological samples with complex topography. Anal. Chem. 89, 1131–1137 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Lanekoff, I. et al. Automated platform for high-resolution tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 84, 8351–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, M. et al. Proteoform‐selective imaging of tissues using mass spectrometry**. ngew. Chem. Int. Ed. 61, e202200721 (2022).

    Article  CAS  Google Scholar 

  54. Hale, O. J., Hughes, J. W. & Cooper, H. J. Simultaneous spatial, conformational, and mass analysis of intact proteins and protein assemblies by nano-DESI travelling wave ion mobility mass spectrometry imaging. Int. J. Mass Spectrom. 468, 116656 (2021).

    Article  CAS  Google Scholar 

  55. Sisley, E. K., Hale, O. J., Styles, I. B. & Cooper, H. J. Native ambient mass spectrometry imaging of ligand-bound and metal-bound proteins in rat brain. J. Am. Chem. Soc. 144, 2120–2128 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Unsihuay, D. et al. Imaging of triglycerides in tissues using nanospray desorption electrospray ionization (Nano-DESI) mass spectrometry. Int. J. Mass Spectrom. 448, 116269 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Nguyen, K., Carleton, G., Lum, J. J. & Duncan, K. D. Expanding spatial metabolomics coverage with lithium-doped nanospray desorption electrospray ionization mass spectrometry imaging. Anal. Chem. 96, 18427–18436 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Mavroudakis, L., Duncan, K. D. & Lanekoff, I. Host–guest chemistry for simultaneous imaging of endogenous alkali metals and metabolites with mass spectrometry. Anal. Chem. 94, 2391–2398 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gosline, S. J. C. et al. Proteome mapping of the human pancreatic islet microenvironment reveals endocrine–exocrine signaling sphere of influence. Mol. Cell. Proteom. 22, 100592 (2023).

    Article  CAS  Google Scholar 

  60. Jiang, L., Hilger, R. T. & Laskin, J. Hardware and software solutions for implementing nanospray desorption electrospray ionization (nano‐DESI) sources on commercial mass spectrometers. J. Mass Spectrom. 59, e5065 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Hernly, E., Hu, H. & Laskin, J. MSIGen: an open-source Python package for processing and visualizing mass spectrometry imaging data. J. Am. Soc. Mass Spectrom. 35, 2315–2323 (2024).

    Article  CAS  PubMed  Google Scholar 

  62. Jiang, L.-X., Yang, M., Wali, S. N. & Laskin, J. High-throughput mass spectrometry imaging of biological systems: current approaches and future directions. Trends Anal. Chem. 163, 117055 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.-X.J., X.L. and J.L. acknowledge support from the National Institutes of Health (NIH) awards RF1MH128866 (BICCN), R01MH136394 and UH3CA255132 (HuBMAP) along with support from the National Science Foundation (NSF-2108729 and 2333734). M.P. and D.B. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; FOR 2177-251124697). We are grateful to J. Chen, C. Matthews and M. Campbell-Thompson (Department of Pathology, Immunology and Laboratory Medicine, University of Florida) and Y. Zhu and P. Piehowski (Pacific Northwest National Laboratory) for providing human pancreatic tissue sections. We thank M. Yang from Purdue University for sectioning mouse brain tissue and J. H. Park from the Birck Nanotechnology Center at Purdue University for helpful discussions and technical assistance with the development of the photomask.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and X.L. developed the iMFP procedure. J.L., D.B., L.-X.J. and M.P. developed the SLE-MFP procedure. X.L. and L.-X.J. performed imaging experiments and processed the data. J.L. and D.B. conceived the study and acquired funding. L.-X.J. and J.L. co-wrote the manuscript with assistance from X.L., D.B. and M.P.

Corresponding author

Correspondence to Julia Laskin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Key references

Jiang, L. X. et al. Lab Chip 23, 4664–4673 (2023): https://doi.org/10.1039/D3LC00637A

Li, X. et al. Anal. Chim. Acta 1279, 341830 (2023): https://doi.org/10.1016/j.aca.2023.341830

Li, X. et al. Anal. Chem. 94, 9690–9696 (2022): https://doi.org/10.1021/acs.analchem.2c01093

Li, X. et al. Angew. Chem. Int. Ed. 59, 22388–22391 (2020): https://doi.org/10.1002/anie.202006531

This protocol is an extension to: Nat. Protoc. 14, 3445–3470 (2019): https://doi.org/10.1038/s41596-019-0237-4

Supplementary information

Reporting Summary

Supplementary Table 1

3D CAD design file for the SLE-MFP.

Supplementary Table 2

3D CAD design file for the SLE-MFP holder.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, LX., Li, X., Polack, M. et al. High-spatial-resolution mass spectrometry imaging of biological tissues using a microfluidic probe. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01188-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing