Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Electrocatalytic semi-hydrogenation of alkynes using water as the hydrogen source

Abstract

The semi-hydrogenation of alkynes to alkenes, especially acetylene to ethylene, is an essential transformation that delivers raw materials and scaffolds for synthetic industries. Electrocatalytic hydrogenation, which is green and mild, provides an alternative strategy to the conventional hydrogenation process, which relies on high temperature, high pressure and flammable H2. This protocol describes an electrocatalytic semi-hydrogenation method to synthesize olefins with water as the hydrogen source under ambient temperature and pressure. Electrocatalytic semi-hydrogenation involves the adsorption and activation of alkynes and the cathodic generation of the active hydrogen (H*) intermediate from water dissociation, followed by the addition of H* to an adsorbed alkyne to yield an alkene. This process is generally assisted by Cu-based electrocatalysts (sulfur-modified Cu and Cu nanoparticles) and commercially available reaction vessels and is performed under a direct-current or constant potential power supply. Here we provide detailed procedures for catalyst design synthesis, alkene electrosynthesis and electrochemical in situ/ex situ spectroscopies for investigating reaction mechanisms. The semi-hydrogenation procedure can be performed within hours; it can also be flexibly adapted to synthetic procedures performed in batch or flow reactors and for various reaction times to meet the adjustable capacity requirements for fine or bulk chemicals. Compared with conventional approaches, the electrocatalytic semi-hydrogenation method eliminates the need for expensive and toxic hydrogenation reagents and conditions with elevated temperature and pressure. Our electrocatalytic semi-hydrogenation strategy has various advantages as a sustainable and alternative method to existing methods, including high alkene selectivity, operational simplicity, substrate universality and easily reproducible functional group compatibility.

Key points

  • This protocol describes an electrocatalytic semi-hydrogenation method to synthesize olefins with water as the hydrogen source under ambient conditions. The procedures for catalyst design synthesis, alkene electrosynthesis and electrochemical in situ/ex situ spectroscopies for investigating the reaction mechanisms are provided in detail.

  • The semi-hydrogenation protocol has the advantages of high alkene selectivity, operational simplicity, substrate universality and easily reproducible functional group compatibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of mechanism.
Fig. 2: The scope of electrocatalytic semi-hydrogenation.
Fig. 3: Electrocatalysis setup for small-scale reactions in an H-type cell.
Fig. 4: Electrocatalysis setup for the gram-scale reactions in the flow cell.
Fig. 5: Electrocatalysis setup for a flow cell equipped with a GDE.
Fig. 6: Characterization results for the mechanism investigation.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available within the figures and the Supplementary Information. Additional data that support the findings of this study can be obtained from the corresponding author upon request.

References

  1. Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Shi, R. et al. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 4, 565–574 (2021).

    Article  CAS  Google Scholar 

  4. Fedorov, A., Liu, H. J., Lo, H. K. & Coperet, C. Silica-supported Cu nanoparticle catalysts for alkyne semihydrogenation: effect of ligands on rates and selectivity. J. Am. Chem. Soc. 138, 16502–16507 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Tan, Q. et al. Tandem electrocatalytic alkyne semihydrogenation over bicomponent catalysts through hydrogen spillover. Angew. Chem. Int. Ed. 63, e202400483 (2024).

    Article  CAS  Google Scholar 

  6. Zhao, X. et al. Thiol treatment creates selective Palladium catalysts for semihydrogenation of internal alkynes. Chem 4, 1080–1091 (2018).

    Article  CAS  Google Scholar 

  7. Huang, L., Bao, D., Jiang, Y., Zheng, Y. & Qiao, S.-Z. Electrocatalytic acetylene hydrogenation in concentrated seawater at industrial current densities. Angew. Chem. Int. Ed. 63, e202405943 (2024).

    Article  CAS  Google Scholar 

  8. Cao, Y. et al. Adsorption site regulation to guide atomic design of Ni–Ga catalysts for acetylene semi-hydrogenation. Angew. Chem. Int. Ed. 59, 11647–11652 (2020).

    Article  CAS  Google Scholar 

  9. Li, B. & Ge, H. Highly selective electrochemical hydrogenation of alkynes: rapid construction of mechanochromic materials. Sci. Adv. 5, eaaw2774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, D. S., Chen, Q. A., Lu, S. M. & Zhou, Y. G. Asymmetric hydrogenation of heteroarenes and arenes. Chem. Rev. 112, 2557–2590 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, C., Chen, F., Zhao, B. H., Wu, Y. & Zhang, B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat. Rev. Chem. 8, 277–293 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Durin, G. et al. Hydride-free hydrogenation: unraveling the mechanism of electrocatalytic alkyne semihydrogenation by nickel–bipyridine complexes. J. Am. Chem. Soc. 145, 17103–17111 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, C., Wu, Y., Zhao, B. & Zhang, B. Designed nanomaterials for electrocatalytic organic hydrogenation using water as the hydrogen source. Acc. Chem. Res. 56, 1872–1883 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida, J. I., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Tang, C., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. Engl. 60, 19572–19590 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Bu, J. et al. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 4, 557–564 (2021).

    Article  CAS  Google Scholar 

  18. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. Engl. 57, 5594–5619 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, Y., Liu, C., Wang, C., Lu, S. & Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode. Angew. Chem. Int. Ed. 59, 21170–21175 (2020).

    Article  CAS  Google Scholar 

  20. Cummings, S. P., Thanh-Ngoc, L., Fernandez, G. E., Quiambao, L. G. & Stokes, B. J. Tetrahydroxydiboron-mediated palladium-catalyzed transfer hydrogenation and deuteriation of alkenes and alkynes using water as the stoichiometric H or D atom donor. J. Am. Chem. Soc. 138, 6107–6110 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Harnisch, F. & Morejon, M. C. Hydrogen from water is more than a fuel: hydrogenations and hydrodeoxygenations for a biobased economy. Chem. Rec. 21, 2277–2289 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, P. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem. Int. Ed. Engl. 58, 9155–9159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, Y. et al. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Sci. Adv. 8, eabm9477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin, X. et al. Electron divergence of Cuδ− and Pdδ+ in Cu3Pd alloy-based heterojunctions boosts concerted C≡C bond binding and the Volmer step for alkynol semihydrogenation. J. Am. Chem. Soc. 146, 18451–18458 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Bu, J. et al. Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols. Nat. Commun. 14, 1533 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meng, L. et al. Alloying and confinement effects on hierarchically nanoporous CuAu for efficient electrocatalytic semi-hydrogenation of terminal alkynes. Nat. Commun. 15, 5999 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, Y. et al. Dopant- and surfactant-tuned electrode-electrolyte interface enabling efficient alkynol semi-hydrogenation. J. Am. Chem. Soc. 145, 6516–6525 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Shi, Y. & Zhang, B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529–1541 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Li, H. et al. σ-Alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdSX nanocapsules. J. Am. Chem. Soc. 144, 19456–19465 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, B. H. et al. Economically viable electrocatalytic ethylene production with high yield and selectivity. Nat. Sustain. 6, 827–837 (2023).

    Article  Google Scholar 

  31. Song, Z., Yang, R., Liu, X., Zhang, B. & Wu, Y. An organic molecular mimetic metal-free heterogeneous catalyst for electrocatalytic alkyne semihydrogenation. Angew. Chem. Int. Ed. 63, e202410200 (2024).

    CAS  Google Scholar 

  32. Chen, F. et al. Ethylene electrosynthesis from low-concentrated acetylene via concave-surface enriched reactant and improved mass transfer. Nat. Commun. 15, 5914 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Z. et al. Highly selective acetylene-to-ethylene electroreduction over Cd-decorated Cu catalyst with efficiently inhibited carbon–carbon coupling. Angew. Chem. Int. Ed. 63, e202400122 (2024).

    Article  CAS  Google Scholar 

  34. Li, H. et al. Adsorption configuration and H* flux modulation enable electrocatalytic semihydrogenation of alkynes with group tolerance in a palladium membrane reactor. J. Am. Chem. Soc. 147, 17849–17859 (2025).

    Article  PubMed  Google Scholar 

  35. Wu, Y. et al. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 12, 3881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akhade, S. A. et al. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem. Rev. 120, 11370–11419 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Ling, Y. et al. Selenium vacancy promotes transfer semihydrogenation of alkynes from water electrolysis. ACS Catal. 11, 9471–9478 (2021).

    Article  CAS  Google Scholar 

  38. Zhang, L. et al. Deprotonated 2-thiolimidazole serves as a metal-free electrocatalyst for selective acetylene hydrogenation. Nat. Chem. 16, 893–900 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, S. et al. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions. Nat. Commun. 12, 7072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  41. Zheng, Y., Jiao, Y., Vasileff, A. & Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018).

    Article  CAS  Google Scholar 

  42. Li, R. et al. One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines. Nat. Commun. 13, 5951 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  44. Morales-Guio, C. G., Stern, L. A. & Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, M. et al. Recent advances in electrocatalytic hydrogenation reactions on copper-based catalysts. Adv. Mater. 36, 2307913 (2024).

    Article  CAS  Google Scholar 

  46. Guo, S. et al. Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst. Nat. Commun. 13, 5927 (2022).

    Google Scholar 

  47. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Czaikowski, M. E., Anferov, S. W., Tascher, A. P. & Anderson, J. S. Electrocatalytic semihydrogenation of terminal alkynes using ligand-based transfer of protons and electrons. J. Am. Chem. Soc. 146, 476–486 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant no. 2024YFA1510100), the China Postdoctoral Fellowship Program of CPSF (grant no. GZC20241201) and the China Postdoctoral Science Foundation (grant no. 2024M762340) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Y.G., M.H. and B.Z. developed the protocol and co-drafted the manuscript. Y.W., B.-H.Z. and C.L. contributed to the discussion and manuscript modification.

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Hanfeng Liang and Shi-Zhang Qiao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Zhao, B.-H. et al. Nat. Sustain. 6, 827–837 (2023): https://doi.org/10.1038/s41893-023-01084-x

Li, H. et al. J. Am. Chem. Soc. 144, 19456–19465 (2022): https://doi.org/10.1021/jacs.2c07742

Gao, Y. et al. Sci. Adv. 8, eabm9477 (2022): https://doi.org/10.1126/sciadv.abm9477

Wu, Y. et al. Nat. Commun. 12, 3881 (2021): https://doi.org/10.1038/s41467-021-24059-y

Wu, Y. et al. Angew. Chem. Int. Ed. 59, 21170–21175 (2020): https://doi.org/10.1002/anie.202009757

Extended data

Extended Data Fig. 1

Photographs of CF, Cu(OH)2, CuS and CuS.

Extended Data Fig. 2

Photographs of GDL-CP and GDL-CP supported Cu.

Extended Data Fig. 3 Procedure for purifying 4-vinylaniline.

a, The reaction mixture transferred to a separatory funnel. b, Add an additional 15 mL of DCM to the separatory funnel. c, Dry the organic layer with anhydrous Na2SO4. d, Remove EA using a rotary evaporator. e, The obtained product. f, The obtained NMR sample.

Extended Data Fig. 4

The GC with the gas at the flow cell outlet directly injected into it.

Extended Data Fig. 5

The setup for the electrochemical in situ ATR−FTIR measurements.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., He, M., Wu, Y. et al. Electrocatalytic semi-hydrogenation of alkynes using water as the hydrogen source. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01230-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing