Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Enzymatic X-ray absorption spectroelectrochemistry

Abstract

Understanding the redox properties and catalytic behavior of proteins is critical for harnessing their functions in biocatalysis and to promote efficient bio-inspired catalysts design. Enzymatic X-ray absorption spectroelectrochemistry (XA-SEC) combines the insights of X-ray absorption spectroscopy with the precision of electrochemical methods to elucidate enzymes’ redox properties and catalytic behavior. Here we describe how to perform enzymatic XA-SEC experiments. The procedure begins with the preparation of the carbon-based working electrode to enhance enzyme immobilization. We exemplify with the efficient immobilization of bilirubin oxidase from Myrothecium verrucaria on the electrode surface, utilizing nanomaterials to enhance biomaterial loading and electron-transfer at the enzyme–electrode interface. Next, we guide researchers through setting up a standard three-electrode electrochemical cell, ensuring proper electrical connections and electrolyte preparation. Our Protocol details the Cu K-edge X-ray absorption spectroscopy measurement procedure at the synchrotron light sources, with in situ electrochemical control. Real-time redox processes are monitored through direct electron transfer analysis, providing valuable thermodynamic and kinetic information. It is important to determine the stability and activity of the analyzed protein under X-ray beam exposure; our approach typically results in stable electrochemical and spectroscopic signals for long experimental runs, showcasing the enzyme’s robust performance and efficient protein immobilization. The method’s ability to correlate XA-SEC data with direct electron transfer and substrate-biding analysis provides a powerful tool for advancing our understanding of enzymatic electrocatalysis and opens new avenues for developing sustainable bioelectrochemical technologies.

Key points

  • X-ray absorption spectroelectrochemistry is crucial to investigating metallic centers within metalloproteins, especially during electrochemical reactions in which redox states change.

  • Performing X-ray absorption spectroelectrochemistry involves multiple details and challenges, either from the protein, the spectroscopic or the electrochemistry sides. As synchrotron sources’ time is scarce, here, we present a Protocol with detailed steps and an extensive troubleshooting section to help researchers acquire useful data within the available time shifts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural visualization of the metalloprotein and typical XAS stage/cell configuration.
Fig. 2: Overview of the Carnaúba XAS beamline; included are photographs showing the two experimental stations (Tarumã and Sapoti).
Fig. 3: A combination of techniques is essential for a deep understanding of enzymatic mechanisms, especially in the context of bioelectrocatalysis.
Fig. 4: Typical potentiostat configuration for a three-electrode experiment in XA-SEC.
Fig. 5: Representation of a CV at a nonfaradaic region.
Fig. 6: XA-SEC spectroscopic and titration graphs for ORR with MvBOD.
Fig. 7: XANES data for MvBOD during WOR.

Similar content being viewed by others

Data availability

All data from published works by the group are available from the corresponding author upon reasonable request.

Code availability

No code was employed.

References

  1. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L. & Thornton, J. M. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13, 1205–1218 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Waldron, K. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metal sensing. Nature 460, 823–830 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L. & Minor, W. Data mining of metal ion environments present in protein structures. J. Inorg. Biochem. 102, 1765–1776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bowman, S. E. J., Bridwell-Rabb, J. & Drennan, C. L. Metalloprotein crystallography: more than a structure. Acc. Chem. Res. 49, 695–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dudev, T. & Lim, C. Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu. Rev. Biophys. 37, 97–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Stripp, S. T. et al. Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase. Chem. Rev. 122, 11900–11973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Sedenho, G. C., Colombo, R. N. P., Iost, R. M., Lima, F. C. D. A. & Crespilho, F. N. Exploring electron transfer: bioinspired, biomimetics, and bioelectrochemical systems for sustainable energy and value-added compound synthesis. Appl. Phys. Rev. 11, 021341 (2024).

    Article  CAS  Google Scholar 

  9. Colombo, R. N. P., Sedenho, G. C. & Crespilho, F. N. Challenges in biomaterials science for electrochemical biosensing and bioenergy. Chem. Mater. https://doi.org/10.1021/acs.chemmater.2c02080 (2022).

    Article  Google Scholar 

  10. Butt, J. N., Jeuken, L. J. C., Zhang, H., Burton, J. A. J. & Sutton-Cook, A. L. Protein film electrochemistry. Nat. Rev. Methods Prim. 3, 77 (2023).

    Article  CAS  Google Scholar 

  11. Castro, K. P. R., Colombo, R. N. P., Iost, R. M., da Silva, B. G. R. & Crespilho, F. N. Low-dimensionality carbon-based biosensors: the new era of emerging technologies in bioanalytical chemistry. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-023-04578-x (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meitzner, G., Gardea-Torresdey, J., Parsons, J., Scott, S. L. & Deguns, E. W. The effect of cryogenic sample cooling on X-ray absorption spectra. Microchem. J. 81, 61–68 (2005).

    Article  CAS  Google Scholar 

  13. Macedo, L. J. A., Hassan, A., Sedenho, G. C. & Crespilho, F. N. Assessing electron transfer reactions and catalysis in multicopper oxidases with operando X-ray absorption spectroscopy. Nat. Commun. 11, 316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Souza, J. C. P. et al. In situ and operando techniques for investigating electron transfer in biological systems. ChemElectroChem 8, 431–446 (2021).

    Article  Google Scholar 

  15. Samajdar, R. N. & Bhattacharyya, A. J. Structure-redox response correlation in a few select heme systems using X-ray absorption spectroelectrochemistry. J. Phys. Chem. B 125, 5258–5264 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Cheaib, K., Maurice, B., Mateo, T., Halime, Z. & Lassalle-Kaiser, B. Time-resolved X-ray absorption spectroelectrochemistry of redox active species in solution. J. Synchrotron Radiat. 26, 1980–1985 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Cząstka, K., Oughli, A. A., Rüdiger, O. & DeBeer, S. Enzymatic X-ray absorption spectroelectrochemistry. Faraday Discuss. 234, 214–231 (2022).

    Article  PubMed  Google Scholar 

  18. Macedo, L. J. A. et al. Three-dimensional catalysis and the efficient bioelectrocatalysis beyond surface chemistry. J. Catal. 401, 200–205 (2021).

    Article  CAS  Google Scholar 

  19. Fuller, J., Wilson, T. R., Eberhart, M. E. & Alexandrova, A. N. Charge density in enzyme active site as a descriptor of electrostatic preorganization. J. Chem. Inf. Model 59, 2367–2373 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Sedenho, G. C., Colombo, R. N. P. & Crespilho, F. N. Insights from enzymatic catalysis: a path towards bioinspired high‐performance electrocatalysts. ChemCatChem https://doi.org/10.1002/cctc.202300491 (2023).

    Article  Google Scholar 

  21. Grillo, I. B., Urquiza-Carvalho, G. A., Bachega, J. F. R. & Rocha, G. B. Elucidating enzymatic catalysis using fast quantum chemical Descriptors. J. Chem. Inf. Model 60, 578–591 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Tolentino, H. C. N. et al. X-ray microscopy developments at Sirius-LNLS: first commissioning experiments at the Carnauba beamline. In Proc. SPIE 11839, X-Ray Nanoimaging: Instruments and Methods V, 1183904 (SPIE, 2021).

  23. Sedenho, G. C. et al. Investigation of water splitting reaction by a multicopper oxidase through X‐ray absorption nanospectroelectrochemistry. Adv. Energy Mater. https://doi.org/10.1002/aenm.202202485 (2022).

    Article  Google Scholar 

  24. Tolentino, H. C. N. et al. The CARNAÚBA X-ray nanospectroscopy beamline at the Sirius-LNLS synchrotron light source: developments, commissioning, and first science at the TARUMÃ station. J. Electron Spectros. Relat. Phenom. 266, 147340 (2023).

    Article  CAS  Google Scholar 

  25. Westre, T. E. et al. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297–6314 (1997).

    Article  CAS  Google Scholar 

  26. Baker, M. L. et al. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 345, 182–208 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Messias, I. et al. Role of structural and compositional changes of Cu2 O nanocubes in nitrate electroreduction to ammonia. ACS Appl. Energy Mater. 7, 9034–9044 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bertella, F., Lopes, C. W., Benvenutti, E. V. & de Souza, M. O. Unveiling the stability of mixed Zn/Co-ZIFs as catalysts for CO2 fixation into cyclic carbonates. Catal. Today 445, 115096 (2025).

    Article  CAS  Google Scholar 

  29. Fritzen, D. L. et al. From synthesis to fabrication: engineering thin translucent films with green persistent luminescent nanoparticles. Opt. Mater. 20, 100271 (2023).

    CAS  Google Scholar 

  30. Fang, L., Seifert, S., Winans, R. E. & Li, T. Understanding synthesis and structural variation of nanomaterials through in situ/operando XAS and SAXS. Small 18, e2106017 (2022).

    Article  PubMed  Google Scholar 

  31. Alves, F. B. et al. Facilitating seed iron uptake through amine-epoxide microgels: a novel approach to enhance cucumber (Cucumis sativus) germination. J. Agric. Food Chem. 72, 14570–14580 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blank, M. A. et al. Structural models of the [Fe4S4] clusters of homologous nitrogenase Fe proteins. Inorg. Chem. 50, 7123–7128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Solomon, E. I., Szilagyi, R. K., DeBeer George, S. & Basumallick, L. Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem. Rev. 104, 419–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Feiters, M. C. X-ray absorption spectroscopic studies of metal coordination in zinc and copper proteins. Comments Inorg. Chem. 11, 131–174 (1990).

    Article  CAS  Google Scholar 

  35. Bobyr, E. et al. High-resolution analysis of Zn2+ coordination in the alkaline phosphatase superfamily by EXAFS and X-ray crystallography. J. Mol. Biol. 415, 102–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Penner-Hahn, J. E. et al. Structural characterization of the manganese sites in the photosynthetic oxygen-evolving complex using X-ray absorption spectroscopy. J. Am. Chem. Soc. 112, 2549–2557 (1990).

    Article  CAS  Google Scholar 

  37. Wu, A. J., Penner-Hahn, J. E. & Pecoraro, V. L. Structural, spectroscopic, and reactivity models for the manganese catalases. Chem. Rev. 104, 903–938 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. de Barros, H. R., Miguel, V. M., Colombo, R. N. P., da Silva, R. T. P. & de Torresi, S. I. C. in Advances in Bioelectrochemistry (ed. Crespilho, F. N.) Vol. 5, 37–83 (Springer International Publishing, 2023).

  39. Le Ru, E. C. & Etchegoin, P. G. Quantifying SERS enhancements. MRS Bull. 38, 631–640 (2013).

    Article  Google Scholar 

  40. Colombo, R. N. P., Moreira, R. V., de Faria, D. L. A. & Córdoba de Torresi, S. I. Controlling gold electrodeposition on porous polymeric templates produced by the breath‐figure method: fabrication of SERS‐active surfaces. ChemPlusChem 84, 1052–1059 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. de Souza, J. C. P., Silva, W. O., Lima, F. H. B. & Crespilho, F. N. Enzyme activity evaluation by differential electrochemical mass spectrometry. Chem. Commun. 53, 8400–8402 (2017).

    Article  Google Scholar 

  42. Iost, R. M., Radhakrishnan, V., Nascimento, S. Q., Lima, F. H. B. & Crespilho, F. N. Hydrogen bioelectrogeneration with PH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide. Chem. Commun. https://doi.org/10.1039/D3CC06185J (2024).

    Article  Google Scholar 

  43. Mendes, G. R., de Modenez, I. A., Cagnani, G. R., Colombo, R. N. P. & Crespilho, F. N. Exploring enzymatic conformational dynamics at surfaces through μ-FTIR spectromicroscopy. Anal. Chem. https://doi.org/10.1021/acs.analchem.3c00872 (2023).

    Article  PubMed  Google Scholar 

  44. Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H. & Azzazy, H. M. E.-S. Enzyme immobilization technologies and industrial applications. ACS Omega 8, 5184–5196 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Datta, S., Christena, L. R. & Rajaram, Y. R. S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3, 1–9 (2013).

    Article  PubMed  Google Scholar 

  46. Jesionowski, T., Zdarta, J. & Krajewska, B. Enzyme immobilization by adsorption: a review. Adsorption 20, 801–821 (2014).

    Article  CAS  Google Scholar 

  47. Masalova, O., Kulikouskaya, V., Shutava, T. & Agabekov, V. Alginate and chitosan gel nanoparticles for efficient protein entrapment. Phys. Procedia 40, 69–75 (2013).

    Article  CAS  Google Scholar 

  48. Sabaté del Río, J., Henry, O. Y. F., Jolly, P. & Ingber, D. E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 14, 1143–1149 (2019).

    Article  PubMed  Google Scholar 

  49. Colombo, R. N. P., Nascimento, S. Q. & Crespilho, F. N. Conductance channels in a single-entity enzyme. J. Phys. Chem. Lett. https://doi.org/10.1021/acs.jpclett.4c01796 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shein, J. B., Lai, L. M. H., Eggers, P. K., Paddon-Row, M. N. & Gooding, J. J. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25, 11121–11128 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Holzinger, M., Goff, A., Le & Cosnier, S. Nanomaterials for biosensing applications: a review. Front. Chem. https://doi.org/10.3389/fchem.2014.00063 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fogel, R. & Limson, J. L. Probing fundamental film parameters of immobilized enzymes—towards enhanced biosensor performance. Part I—QCM-D mass and rheological measurements. Enzym. Microb. Technol. 49, 146–152 (2011).

    Article  CAS  Google Scholar 

  53. Bartlett, P. N. & Al-Lolage, F. A. There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J. Electroanal. Chem. https://doi.org/10.1016/j.jelechem.2017.06.021 (2017).

    Article  Google Scholar 

  54. Vicente, R. A. et al. Development of electrochemical cells and their application for spatially resolved analysis using a multitechnique approach: from conventional experiments to X-ray nanoprobe beamlines. Anal. Chem. 95, 16144–16152 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).

    Article  CAS  Google Scholar 

  56. Marken, F., Neudeck, A. & Bond, A. M. in Electroanalytical Methods (ed. Scholz, F.) 57–106 (Springer, 2010).

  57. Léger, C. et al. Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry 42, 8653–8662 (2003).

    Article  PubMed  Google Scholar 

  58. Brewer, P. J., Leese, R. J. & Brown, R. J. C. An improved approach for fabricating Ag/AgCl reference electrodes. Electrochim. Acta 71, 252–257 (2012).

    Article  CAS  Google Scholar 

  59. Yang, H., Yang, S., Kong, J., Dong, A. & Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc. 10, 382–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–E3103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Siegbahn, P. E. M. Theoretical study of O2 reduction and water oxidation in multicopper oxidases. J. Phys. Chem. A 124, 5849–5855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gonçales, V. R. et al. Three-dimensional graphene/carbon nanotubes hybrid composites for exploring interaction between glucose oxidase and carbon based electrodes. J. Electroanal. Chem. 775, 235–242 (2016).

    Article  Google Scholar 

  63. Hassan, A., Colombo, R. N. P., Iost, R. M. & Crespilho, F. N. Amplifying sensing performance through gold micropatterns-induced modulation of graphene’s vertical electron transfer. Electrochim. Acta 466, 143069 (2023).

    Article  CAS  Google Scholar 

  64. Fatima, S. et al. Engineering a conformationally switchable artificial metalloprotein. J. Am. Chem. Soc. 144, 21606–21616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank São Paulo Research Foundation - FAPESP for the financial support, with grant nos. 2021/05665-7 (R.N.P.C.), 2018/22214-6, 2022/09164-5, 2023/01529-7 (F.N.C.) and 2020/04796-8 (G.C.S.). This research used resources from the Brazilian Synchrotron Light Laboratory (LNLS), part of the Brazilian Center for Research in Energy and Materials (CNPEM), a private nonprofit organization under the supervision of the Brazilian Ministry for Science, Technology and Innovations (MCTI). The Carnauba beamline staff are acknowledged for their assistance during the experiments.

Author information

Authors and Affiliations

Authors

Contributions

R.N.P.C., G.C.S., I.T.N. and F.N.C. contributed to writing, editing and formatting. F.N.C. provided the initial draft.

Corresponding author

Correspondence to Frank N. Crespilho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Elisabeth Lojou, Soumalya Sinha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Sedenho, G. C. et al. Adv. Energy Matter. 12, 2202485 (2022): https://doi.org/10.1002/aenm.202202485

Macedo, L. J. A. et al. Nat. Commun. 11, 316 (2020): https://doi.org/10.1038/s41467-019-14210-1

Sedenho, G. C. et al. Appl. Phys. Rev. 11, 021341 (2024): https://doi.org/10.1063/5.0204996

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, R.N.P., Sedenho, G.C., Neckel, I.T. et al. Enzymatic X-ray absorption spectroelectrochemistry. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01254-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing