Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Navigating the data processing for cytometry-based single-cell proteomics

Abstract

Cytometry-based single-cell proteomics (SCP) has emerged as a powerful technique that greatly advances our understanding of complex biological systems with a new level of granularity. Various methods have been developed to process cytometry-based SCP data. However, it remains extremely challenging to identify the well-performing processing workflows for specific datasets. Here, we develop ANPELA, an out-of-the-box method for navigating the proteomic data processing based on large-scale screening. It enables a comparison among the performances of thousands of the processing workflows in identifying cell subpopulations and inferring pseudo-time trajectories based on machine learning. Several cases are then analyzed, highlighting its ability to identify the optimal ways of data processing for cytometry-based SCP studies. A new package is also deployed to ensure multiscenario usability (such as desktop software, R package and online server), data security (enabling local and open-source execution) and a user-friendly interface (realizing interactive and visualizable applications). Overall, ANPELA can be utilized by a broad audience, including those without coding skills, and is freely accessible and downloadable at https://idrblab.org/anpela/. Its execution time may range from minutes to hours depending on the size of the analyzed data.

Key points

  • ANPELA is a tool for evaluating the utility of proteomic data processing workflows and is intended to facilitate the automatic selection of the most appropriate processing methods for single cell proteomic data.

  • ANPELA enables a systematic assessment of existing data processing methods for cell subpopulation identification and pseudo-time trajectory inference.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The schematic overview of ANPELA.
Fig. 2: Overview of the Protocol procedures.
Fig. 3: Assessment-driven navigation based on multiple criteria.
Fig. 4: Navigating data processing for CSI using ANPELA.
Fig. 5: Navigating data processing for PTI Using ANPELA.

Data availability

All datasets that were analyzed within this protocol had been made downloadable on the website https://idrblab.org/anpela/ANPELA_exampledata.zip. These datasets were also accessible in the SingPro database (https://idrblab.org/singpro/) through IDs SCP57021, SCP11272, SCP43132, SCP77365, SCP80719, SCP47065, SCP37430, SCP36391, SCP96723 and SCP93731.

Code availability

All source codes of this protocol are available for use under a GPL v3 license and can be acquired via GitHub at https://github.com/idrblab/ANPELA. ANPELA web platform is freely available for academic purposes at https://idrblab.org/anpela. ANPELA desktop software is available for academic use at https://idrblab.org/anpela/ANPELA-Setup.exe.

References

  1. Doerr, A. Single-cell proteomics. Nat. Methods 16, 20 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Vistain, L. F. & Tay, S. Single-cell proteomics. Trends Biochem. Sci. 46, 661–672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363–374 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann, F. J. & Bendall, S. C. Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat. Rev. Rheumatol. 16, 87–99 (2020).

    Article  PubMed  Google Scholar 

  5. Labib, M. & Kelley, S. O. Single-cell analysis targeting the proteome. Nat. Rev. Chem. 4, 143–158 (2020).

    Article  PubMed  Google Scholar 

  6. Su, Y., Shi, Q. & Wei, W. Single cell proteomics in biomedicine: high-dimensional data acquisition, visualization, and analysis. Proteomics 17, 1600267 (2017).

    Article  Google Scholar 

  7. Kanno, H. et al. High-throughput fluorescence lifetime imaging flow cytometry. Nat. Commun. 15, 7376 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fürstenau, M. et al. High resolution assessment of minimal residual disease (MRD) by next-generation sequencing (NGS) and high-sensitivity flow cytometry (hsFCM) in the phase 3 GAIA (CLL13) trial. Blood 138, 72 (2021).

    Article  Google Scholar 

  9. Lian, X. et al. SingPro: a knowledge base providing single-cell proteomic data. Nucleic Acids Res. 52, D552–D561 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Hutton, C. et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 39, 1227–1244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arnett, L. P. et al. Reagents for mass cytometry. Chem. Rev. 123, 1166–1205 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Liechti, T. et al. An updated guide for the perplexed: cytometry in the high-dimensional era. Nat. Immunol. 22, 1190–1197 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Kröger, C. et al. Unveiling the power of high-dimensional cytometry data with cyCONDOR. Nat. Commun. 15, 10702 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roca, C. P. et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat. Commun. 12, 2890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chevrier, S. et al. Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 6, 612–620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytom. A 87, 636–645 (2015).

    Article  Google Scholar 

  20. Zunder, E. R., Lujan, E., Goltsev, Y., Wernig, M. & Nolan, G. P. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16, 323–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quintelier, K. et al. Analyzing high-dimensional cytometry data using FlowSOM. Nat. Protoc. 16, 3775–3801 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Ko, M. E. et al. FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets. Nat. Protoc. 15, 398–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, X. et al. A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol. 20, 297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brooks, T. G., Lahens, N. F., Mrčela, A. & Grant, G. R. Challenges and best practices in omics benchmarking. Nat. Rev. Genet. 25, 326–339 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Aghaeepour, N. et al. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10, 228–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y., Sun, H., Lian, X., Tang, J. & Zhu, F. ANPELA: significantly enhanced quantification tool for cytometry-based single-cell proteomics. Adv. Sci. 10, e2207061 (2023).

    Article  Google Scholar 

  28. Navarro, P. et al. A multicenter study benchmarks software tools for label-free proteome quantification. Nat. Biotechnol. 34, 1130–1136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang, J. et al. ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Brief. Bioinform. 21, 621–636 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, J. et al. Simultaneous improvement in the precision, accuracy, and robustness of label-free proteome quantification by optimizing data manipulation chains. Mol. Cell Proteom. 18, 1683–1699 (2019).

    Article  CAS  Google Scholar 

  31. Liu, P. et al. Comprehensive evaluation and practical guideline of gating methods for high-dimensional cytometry data: manual gating, unsupervised clustering, and auto-gating. Brief. Bioinform. 26, bbae633 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Keeler, A. B. et al. A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry. Nat. Neurosci. 25, 1543–1558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lammel, D. R., Meierhofer, D., Johnston, P., Mbedi, S. & Rillig, M. C. The effects of arbuscular mycorrhizal fungi (AMF) and Rhizophagus irregularis in soil microorganisms accessed by metatranscriptomics and metaproteomics. Preprint at bioRxiv https://doi.org/10.1101/860932 (2019).

  34. Jurburg, S. D. et al. The community ecology perspective of omics data. Microbiome 10, 225 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shen, S. et al. High-quality and robust protein quantification in large clinical/pharmaceutical cohorts with IonStar proteomics investigation. Nat. Protoc. 18, 700–731 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, S. et al. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses. Nucleic Acids Res. 48, e83 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cui, X. et al. Assessing the effectiveness of direct data merging strategy in long-term and large-scale pharmacometabonomics. Front. Pharmacol. 10, 127 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Islam, M. A., Majumder, M. Z. H., Miah, M. S. & Jannaty, S. Precision healthcare: a deep dive into machine learning algorithms and feature selection strategies for accurate heart disease prediction. Comput. Biol. Med. 176, 108432 (2024).

    Article  PubMed  Google Scholar 

  39. Andersen, T. O., Kunath, B. J., Hagen, L. H., Arntzen, M. & Pope, P. B. Rumen metaproteomics: closer to linking rumen microbial function to animal productivity traits. Methods 186, 42–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, T. et al. Block design with common reference samples enables robust large-scale label-free quantitative proteome profiling. J. Proteome Res. 19, 2863–2872 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Louta, M., Banti, K. & Karampelia, I. Emerging technologies for sustainable agriculture: the power of humans and the way ahead. IEEE Access 12, 98492–98529 (2024).

    Article  Google Scholar 

  42. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Mund, A., Brunner, A. D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Chang, Q. et al. Imaging mass cytometry. Cytom. A 91, 160–169 (2017).

    Article  Google Scholar 

  45. Rius Rigau, A. et al. Characterization of vascular niche in systemic sclerosis by spatial proteomics. Circ. Res. 134, 875–891 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Phongpreecha, T. et al. Single-cell peripheral immunoprofiling of Alzheimer’s and Parkinson’s diseases. Sci. Adv. 6, eabd5575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, H. C., Kosoy, R., Becker, C. E., Dudley, J. T. & Kidd, B. A. Automated cell type discovery and classification through knowledge transfer. Bioinformatics 33, 1689–1695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Somol, P. & Novovicová, J. Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1921–1939 (2010).

    Article  PubMed  Google Scholar 

  49. Ji, Z. & Ji, H. TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ahmed, S., Rattray, M. & Boukouvalas, A. GrandPrix: scaling up the Bayesian GPLVM for single-cell data. Bioinformatics 35, 47–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Verrou, K. M., Tsamardinos, I. & Papoutsoglou, G. Learning pathway dynamics from single-cell proteomic data: a comparative study. Cytom. A 97, 241–252 (2020).

    Article  Google Scholar 

  53. Chen, H. et al. Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput. Biol. 12, e1005112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Monaco, G. et al. flowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics 32, 2473–2480 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Fletez-Brant, K., Špidlen, J., Brinkman, R. R., Roederer, M. & Chattopadhyay, P. K. flowClean: automated identification and removal of fluorescence anomalies in flow cytometry data. Cytom. A 89, 461–471 (2016).

    Article  CAS  Google Scholar 

  56. Meskas, J., Yokosawa, D., Wang, S., Segat, G. C. & Brinkman, R. R. flowCut: an R package for automated removal of outlier events and flagging of files based on time versus fluorescence analysis. Cytom. A 103, 71–81 (2023).

    Article  Google Scholar 

  57. Hahne, F. et al. Per-channel basis normalization methods for flow cytometry data. Cytom. A 77, 121–131 (2010).

    Article  Google Scholar 

  58. Finak, G., Perez, J. M., Weng, A. & Gottardo, R. Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinform. 11, 546 (2010).

    Article  Google Scholar 

  59. Azad, A., Rajwa, B. & Pothen, A. flowVS: channel-specific variance stabilization in flow cytometry. BMC Bioinform. 17, 291 (2016).

    Article  Google Scholar 

  60. Emmaneel, A. et al. PeacoQC: peak-based selection of high quality cytometry data. Cytom. A 101, 325–338 (2022).

    Article  Google Scholar 

  61. Guazzini, M., Reisach, A. G., Weichwald, S. & Seiler, C. spillR: spillover compensation in mass cytometry data. Bioinformatics 40, btae337 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, T. J. & Kotecha, N. Cytobank: providing an analytics platform for community cytometry data analysis and collaboration. Curr. Top. Microbiol. Immunol. 377, 127–157 (2014).

    CAS  PubMed  Google Scholar 

  63. Qian, Y. et al. FCSTrans: an open source software system for FCS file conversion and data transformation. Cytom. A 81, 353–356 (2012).

    Article  Google Scholar 

  64. Hahne, F. et al. flowCore: a bioconductor package for high throughput flow cytometry. BMC Bioinform. 10, 106 (2009).

    Article  Google Scholar 

  65. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Cui, G. et al. Spatial molecular anatomy of germ layers in the gastrulating cynomolgus monkey embryo. Cell Rep. 40, 111285 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Fu, J. et al. Optimization of metabolomic data processing using NOREVA. Nat. Protoc. 17, 129–151 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Ingelfinger, F. et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 141, 901–915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Candia, J. et al. From cellular characteristics to disease diagnosis: uncovering phenotypes with supercells. PLoS Comput. Biol. 9, e1003215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hartmann, F. J. et al. Comprehensive immune monitoring of clinical trials to advance human immunotherapy. Cell Rep. 28, 819–831 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Suwandi, J. S. et al. Multidimensional analyses of proinsulin peptide-specific regulatory T cells induced by tolerogenic dendritic cells. J. Autoimmun. 107, 102361 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Dai, Y. et al. CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data. BMC Bioinform. 22, 138 (2021).

    Article  Google Scholar 

  74. Barone, S. M. et al. Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy. eLife 10, e64653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gaudillière, B. et al. Clinical recovery from surgery correlates with single-cell immune signatures. Sci. Transl. Med. 6, 255ra131 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bagwell, C. B. & Adams, E. G. Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann. NY Acad. Sci. 677, 167–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Folcarelli, R. et al. Transformation of multicolour flow cytometry data with OTflow prevents misleading multivariate analysis results and incorrect immunological conclusions. Cytom. A 101, 72–85 (2022).

    Article  CAS  Google Scholar 

  79. den Braanker, H., Bongenaar, M. & Lubberts, E. How to prepare spectral flow cytometry datasets for high dimensional data analysis: a practical workflow. Front. Immunol. 12, 768113 (2021).

    Article  Google Scholar 

  80. Weber, L. M., Nowicka, M., Soneson, C. & Robinson, M. D. diffcyt: differential discovery in high-dimensional cytometry via high-resolution clustering. Commun. Biol. 2, 183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sibbertsen, F. et al. Phenotypic analysis of the pediatric immune response to SARS-CoV-2 by flow cytometry. Cytom. A 101, 220–227 (2022).

    Article  CAS  Google Scholar 

  82. Wang, S. & Brinkman, R. R. Data-driven flow cytometry analysis. Methods Mol. Biol. 1989, 245–265 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant nos. 22220102001, 82373790, and 82404511); Natural Science Foundation of Zhejiang (grant no. RG25H300001); National Key R&D Programs of China (grant no. 2024YFA1307503); Information Technology Center and State Key Lab of CAD&CG, Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

F.Z. conceived the idea and designed the entire research. H.C.S., Y. Zhou., R.Y.J. and Y.X.L. wrote codes. H.C.S., Y. Zhou., C.B.G. and Z.Q.P. conducted benchmark studies. H.C.S., Y. Zhou., M.J.M., X.C.L., B.H.C., T.L.N., Y. Zhang., Y.T.Z., X.N.S., H.Y., X.S., W.Q.X and B.L.Z. finished statistical analysis. Y.B.D., J.N.D., S.Q.L., T.T.F., Y. Zhang., M.X. and Q.X.Y. visualized the results. F.Z. and T.T.F. wrote the manuscript.

Corresponding authors

Correspondence to Tingting Fu or Feng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Florian Ingelfinger and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Zhang, Y. et al. Adv. Sci. 10, e2207061 (2023): https://doi.org/10.1002/advs.202207061

Jurburg, S. D. et al. Microbiome 10, 225 (2022): https://doi.org/10.1186/s40168-022-01423-8

Tang, J. et al. Brief. Bioinform. 21, 621–636 (2020): https://doi.org/10.1093/bib/bby127

Tang, J. et al. Mol. Cell. Proteomics 18, 1683–1699 (2019): https://doi.org/10.1074/mcp.RA118.001169

Cui, X. et al. Front. Pharmacol. 10, 127 (2019): https://doi.org/10.3389/fphar.2019.00127

Extended data

Extended Data Fig. 1 Graphical User Interface of ANPELA and Preparation of Required Data.

(a) The navigation bar of ANPELA software included ‘HOME’, ‘Single-cell Proteomics’, ‘Textual Tutorial’, and ‘Interactive Tutorial’. Clicking on ‘Single-cell Proteomics’ initiated data upload and processing. Clicking on ‘Textual Tutorial’ permitted downloading the textual tutorial. Clicking on ‘Interactive Tutorial’ opened a step-by-step interactive tutorial. (b) The essential data required by ANPELA included FCS files (i.e., raw data files) generated from cytometry-based SCP experiments and a metadata file describing the correlation between the raw data and experimental conditions. The metadata file was a user-created file named ‘metadata.csv’, containing key information in two columns.

Extended Data Fig. 2 GUI of Processing & Assessment and Outcomes of the Assessment.

(a) Simplified GUI for data processing and performance assessment in the desktop software of ANPELA. (b) Results of performance assessment consist of ‘Ranking_Table.csv’ and ‘Ranking_Figure.pdf’, which respectively recorded criteria values and performance levels for all executed data processing workflows.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1–3 and Methods 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhou, Y., Jiang, R. et al. Navigating the data processing for cytometry-based single-cell proteomics. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01257-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research