Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Iron-catalyzed stereoselective glycosylation for 1,2-cis-aminoglycoside assembly

Abstract

Complex carbohydrates are essential to life processes, but it is challenging to isolate these molecules from natural sources in high homogeneity. Therefore, complex-glycan synthesis becomes critical to improving our understanding of their important functions. Due to their complexity, synthesis is still difficult for nonexperts. One of the key challenges is to search for general solutions for highly 1,2-cis-selective glycosylation, which will directly assemble 1,2-cis-2-aminoglycosides that are incorporated in numerous biologically important complex glycans and glycoconjugates. Here we describe an iron-catalyzed, chemical glycosylation method for rapid assembly of 1,2-cis-aminoglycosidic linkages. The iron catalyst is commercially available, and the bench-stable supporting ligand and amination reagents are easily prepared from abundant, readily available starting materials. This catalytic, exclusively 1,2-cis-selective glycosylation is effective for a broad range of glycosyl donors and acceptors, and it can be operated in a continuous fashion and scaled up to the multigram scale. The reactivity of this glycosylation is tunable for both electron-rich and electron-deficient substrates by modulating amination reagents. The glycosylation proceeds through a unique mechanism in which the iron catalyst activates a glycosyl acceptor and an oxidant when it facilitates the cooperative atom transfer of both moieties to a glycosyl donor in an exclusively cis-selective manner. This glycosylation protocol takes several hours to operate. It complements the existing 1,2-cis-selective glycosylation methods and effectively addresses the challenge of achieving both generality and high stereoselectivity in the 1,2-cis-selective aminoglycosylation.

Key points

  • The synthesis of complex carbohydrates for research studies is difficult. A major challenge is that most methods are not generalizable, because small structural changes in the starting materials can have a large impact on the stereoselectivity of the reactions.

  • This Protocol describes a robust, iron-catalyzed glycosylation method for rapid assembly of 1,2-cis-aminoglycosidic linkages within several hours. It is effective for a broad range of substrates, and it can be operated in a continuous fashion and scaled up to the multigram scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glycosylation methods for 1,2-cis-2-amino glycoside assembly.
Fig. 2: Iron-catalyzed selective nitrogen atom transfer reactions with functionalized hydroxylamines.
Fig. 3: Substrate scope for the iron-catalyzed glycal 1,2-cis-aminoglycosylation.
Fig. 4: Iron-catalyzed reiterative glycal 1,2-cis-aminoglycosylation.
Fig. 5: Protocols for the synthesis of 10, 12 and 15 via the iron-catalyzed glycal 1,2-cis-aminoglycosylation.
Fig. 6: Protocols for the synthesis of the iron catalyst 1 and amination reagents 2a and 2c.
Fig. 7: Synthesis of ligand L1.

Similar content being viewed by others

Data availability

Experimental procedures and characterization data for all described compounds and selected NMR spectra are included in the Supporting Information of this Protocol and/or the Supplementary Information, which is available free of charge on https://doi.org/10.1021/jacs.4c15084.

References

  1. Danishefsky, S. J. & Bilodeau, M. T. Glycals in organic synthesis: the evolution of comprehensive strategies for the assembly of oligosaccharides and glycoconjugates of biological consequence. Angew. Chem. Int. Ed. 35, 1380–1419 (1996).

    Article  CAS  Google Scholar 

  2. Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu, X. & Schmidt, R. R. New principles for glycoside-bond formation. Angew. Chem. Int. Ed. 48, 1900–1934 (2009).

    Article  CAS  Google Scholar 

  4. Danishefsky, S. J., Shue, Y.-K., Chang, M. N. & Wong, C.-H. Development of globo-H cancer vaccine. Acc. Chem. Res. 48, 643–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Park, Y. et al. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 355, 162–166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennett, C.S. Selective Glycosylations: Synthetic Methods and Catalysts (Wiley-VCH, 2017).

  7. Yu, B. Gold(I)-catalyzed glycosylation with glycosyl O-alkynylbenzoates as donors. Acc. Chem. Res. 51, 507–516 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Levi, S. M. & Jacobsen, E. N. in Organic Reactions Vol. 100, 801–852 (John Wiley and Sons, 2019).

  9. Nigudkar, S. S. & Demchenko, A. V. Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem. Sci. 6, 2687–2704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, Y. et al. Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334, 498–501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petitou, M. & van Boeckel, C. A. A. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem. Int. Ed. 43, 3118–3133 (2004).

    Article  CAS  Google Scholar 

  12. Pratt, M. R. & Bertozzi, C. R. Synthetic glycopeptides and glycoproteins as tools for biology. Chem. Soc. Rev. 34, 58–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Griffith, D. A. & Danishefsky, S. J. Sulfonamidoglycosylation of glycals. A route to oligosaccharides with 2-aminohexose subunits. J. Am. Chem. Soc. 112, 5811–5819 (1990).

    Article  CAS  Google Scholar 

  14. Fitzsimmons, B. J., Leblanc, Y. & Rokach, J. [4 + 2] Cycloaddition of azodicarboxylate and glycals: a novel and simple method for the preparation of 2-amino-2-deoxy carbohydrates. J. Am. Chem. Soc. 109, 285–286 (1987).

    Article  CAS  Google Scholar 

  15. Du Bois, J., Tomooka, C. S., Hong, J. & Carreira, E. M. Novel, stereoselective synthesis of 2-amino saccharides. J. Am. Chem. Soc. 119, 3179–3180 (1997).

    Article  Google Scholar 

  16. Di Bussolo, V., Liu, J., Huffman, J. L. G. & Gin, D. Y. Acetamidoglycosylation with glycal donors: a one-pot glycosidic coupling with direct installation of the natural C(2)-N-acetylamino functionality. Angew. Chem. Int. Ed. 39, 204–207 (2000).

    Article  Google Scholar 

  17. Kan, C. et al. Photo amidoglycosylation of an allal azidoformate. Synthesis of β-2-amido allopyranosides. Org. Lett. 3, 381–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Gege, C., Oscarson, S. & Schmidt, R. R. Synthesis of fluorescence labeled Sialyl LewisX glycosphingolipids. Tetrahedron Lett. 42, 377–380 (2001).

    Article  CAS  Google Scholar 

  19. Shang, W. et al. Nitrogen-centered radical-mediated cascade amidoglycosylation of glycals. Org. Lett. 23, 1222–1227 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, Y. & Montgomery, J. Synthesis of 2-amino-2-deoxy sugars via boron-catalyzed coupling of glycosyl fluorides and silyl ether acceptors. Org. Lett. 26, 7474–7478 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dulaney, S. B. & Huang, X. Strategies in synthesis of heparin/heparan sulfate oligosaccharides: 2000–present. Adv. Carbohydr. Chem. Biochem. 80, 121–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Winterfeld, G. A. & Schmidt, R. R. Nitroglycal concatenation: a broadly applicable and efficient approach to the synthesis of complex O-glycans. Angew. Chem. Int. Ed. 40, 2654–2657 (2001).

    Article  CAS  Google Scholar 

  23. Benakli, K., Zha, C. & Kerns, R. J. Oxazolidinone protected 2-amino-2-deoxy-d-glucose derivatives as versatile intermediates in stereoselective oligosaccharide synthesis and the formation of α-linked glycosides. J. Am. Chem. Soc. 123, 9461–9462 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Orgueira, H. A., Bartolozzi, A., Schell, P. & Seeberger, P. H. Conformational locking of the glycosyl acceptor for stereocontrol in the key step in the synthesis of heparin. Angew. Chem. Int. Ed. 41, 2128–2131 (2002).

    Article  CAS  Google Scholar 

  25. Xue, J. & Guo, Z. Convergent synthesis of an inner core GPI of sperm CD52. Bioorg. Med. Chem. Lett. 12, 2015–2018 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Manabe, S., Ishii, K. & Ito, Y. N-benzyl-2,3-oxazolidinone as a glycosyl donor for selective α-glycosylation and one-pot oligosaccharide synthesis involving 1,2-cis-glycosylation. J. Am. Chem. Soc. 128, 10666–10667 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Park, J., Kawatkar, S., Kim, J.-H. & Boons, G.-J. Stereoselective glycosylations of 2-azido-2-deoxy-glucosides using intermediate sulfonium ions. Org. Lett. 9, 1959–1962 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mensah, E. A. & Nguyen, H. M. Nickel-catalyzed stereoselective formation of α-2-deoxy-2-amino glycosides. J. Am. Chem. Soc. 131, 8778–8780 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Mensah, E. A., Yu, F. & Nguyen, H. M. Nickel-catalyzed stereoselective glycosylation with C(2)-N-substituted benzylidene d-glucosamine and galactosamine trichloroacetimidates for the formation of 1,2-cis-2-amino glycosides. Applications to the synthesis of heparin disaccharides, GPI anchor pseudodisaccharides, and α-GalNAc. J. Am. Chem. Soc. 132, 14288–14302 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida, K. et al. Chemical synthesis of syndecan-3 glycopeptides bearing two heparan sulfate glycan chains. Angew. Chem. Int. Ed. 53, 9051–9058 (2014).

    Article  CAS  Google Scholar 

  31. Medina, S. et al. Stereoselective glycosylation of 2-nitrogalactals catalyzed by a bifunctional organocatalyst. Org. Lett. 18, 4222–4225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Codeé, J. D. C., Wang, L., Zhang, Y., Overkleeft, H. S. & van der Marel, G. A. Reagent controlled glycosylations for the assembly of well-defined pel oligosaccharides. J. Org. Chem. 85, 15872–15884 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pal, K. B., Guo, A., Das, M., Báti, G. & Liu, X. W. Superbase-catalyzed stereo- and regioselective glycosylation with 2-nitroglycals: facile access to 2-amino-2-deoxy-O-glycosides. ACS Catal. 10, 6707–6715 (2020).

    Article  CAS  Google Scholar 

  34. Zhang, Y., Ma, X. & Zhang, L. Highly stereoselective synthesis of 2-azido-2-deoxyglycosides via gold-catalyzed SN2 glycosylation. CCS Chem. 5, 2799–2807 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu, G.-S., Zhang, Y.-Q., Yuan, Y.-A. & Xu, H. Iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines. J. Am. Chem. Soc. 135, 3343–3346 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, D.-F., Zhu, C.-L., Jia, Z.-X. & Xu, H. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the n–o bond cleavage of functionalized hydroxylamines. J. Am. Chem. Soc. 136, 13186–13189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, D.-F., Zhu, C.-L., Sears, J. D. & Xu, H. Iron(II)-catalyzed intermolecular aminofluorination of unfunctionalized olefins using fluoride ion. J. Am. Chem. Soc. 138, 11360–11367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, H. et al. Stereoselective glycosylation for 1,2-cis-aminoglycoside assembly by cooperative atom transfer catalysis. J. Am. Chem. Soc. 146, 33316–33323 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Yin, L., Zhang, D., Jiang, Z. & Xu, H. Stereoselective multigram-scale Tn antigen synthesis via the iron-catalyzed glycal 1,2-cis-aminoglycosylation. Org. Lett. 27, 5515–5520 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yin, L. et al. Iron-catalyzed glycal cis-aminoacyloxylation for 2-amino saccharide synthesis. Tetrahedron Lett. 167, 155678 (2025).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, H. et al. Iron-catalyzed stereoselective nitrogen atom transfer for 1,2-cis-selective glycosylation. Synlett https://doi.org/10.1055/a-2654-5609 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Seeberger, P. H. The logic of automated glycan assembly. Acc. Chem. Res. 48, 1450–1463 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Halcomb, R. L. & Danishefsky, S. J. On the direct epoxidation of glycals: application of a reiterative strategy for the synthesis of b-linked oligosaccharides. J. Am. Chem. Soc. 111, 6661–6666 (1989).

    Article  CAS  Google Scholar 

  44. Danishefsky, S. J., McClure, K. F., Randolph, J. T. & Ruggeri, R. B. A strategy for the solid-phase synthesis of oligosaccharides. Science 260, 1307–1309 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health (grant no. GM134926). We thank NIH Shared Instrumentation grant S10OD034395 (NMR) and NSF MRI program 1919565 (Single Crystal X-ray diffractometer) for the instrument support.

Author information

Authors and Affiliations

Authors

Contributions

Z.J. designed and performed the experiments and cowrote the paper. D.Z. designed and performed the experiments and cowrote the paper. P.W. synthesized catalyst 1 and performed the experiments. L.Y. performed the experiments. H.X. designed and supervised the experiments, analyzed data and cowrote the paper.

Corresponding author

Correspondence to Hao Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests. The subject matter described in this article is included in patent applications filed by Brandeis University.

Peer review

Peer review information

Nature Protocols thanks Ram Sagar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Li, H. et al. J. Am. Chem. Soc. 146, 33316–33323 (2024): https://doi.org/10.1021/jacs.4c15084

Yin, L., Zhang, D., Jiang, Z. & Xu, H. Org. Lett. 27, 5515–5520 (2025): https://doi.org/10.1021/acs.orglett.5c01560

Lu, D.-F., Zhu, C.-L., Jia, Z.-X. & Xu, H. J. Am. Chem. Soc. 136, 13186–13189 (2014): https://doi.org/10.1021/ja508057u

Liu, G.-S., Zhang, Y.-Q., Yuan, Y.-A. & Xu, H. J. Am. Chem. Soc. 135, 3343–3346 (2013): https://pubs.acs.org/doi/10.1021/ja311923z?ref=recommended

Yin, L. et al. Tetrahedron Lett. 167, 155678 (2025): https://www.sciencedirect.com/science/article/abs/pii/S0040403925002278?via%3Dihub

Supplementary information

Supplementary Information

A. General information. B. Protocols for synthesis of substrates and amination reagents 3, 9, 11, 14, 16 and 17c. C. A procedure for selective N-Boc deprotection. D. Procedures for rapid post-glycosylation deprotection to afford Tn antigen. E. Procedures for the iron-catalyzed reiterative glycal 1,2-cis-aminoglycosylation. F. References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhang, D., Wang, P. et al. Iron-catalyzed stereoselective glycosylation for 1,2-cis-aminoglycoside assembly. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01263-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing