Table 6 Experimental results of all models on AgCNER dataset.

From: AgCNER, the First Large-Scale Chinese Named Entity Recognition Dataset for Agricultural Diseases and Pests

Model

Deep Learning

External Features

LLM

Precision

Recall

F1

HMM

63.58

72.02

67.54

CRF

94.16

92.2

93.17

BiLSTM-CRF

93.26

93.9

93.58

BiLSTM-Attention-CRF

94.04

93.04

93.53

IDCNN-CRF

92.38

93.37

92.88

Lattice-LSTM

Character-word Lattice

90.4

93.13

91.74

TENER

Character and Word-level Embeddings

92.79

94.95

93.85

FLAT

Flat Lattice

93.65

94.87

94.26

NFLAT

Lexicon

94.21

95.10

94.66

Graph4CNER48

Lexicon, Collaborative Graph Network

92.84

93.59

93.22

BERTfrozen-BiLSTM-CRF

93.70

94.58

94.14

BERTfrozen-IDCNN-CRF

 

93.26

93.10

93.18

AgBERT-BiLSTM-CRF

94.01

94.68

94.34

AgBERT-IDCNN-CRF

93.55

94.39

93.97

HNER

Subword sequence

93.76

93.92

93.84