Table 2 Performance metrics of different methods on the Camelyon-17-Refine dataset.

From: Comprehensive Benchmark Dataset for Pathological Lymph Node Metastasis in Breast Cancer Sections

Methods

Acc (%)

AUC (%)

F1 (%)

Recall (%)

Precision (%)

Kappa

PLIP3 (WSIs pre-trained)

Max-MIL

77.8 ± 9.55

72.7 ± 11.09

38.7 ± 10.28

37.4 ± 10.63

41.0 ± 3.25

0.49 ± 0.32

Mean-MIL

79.8 ± 0.24

77.7 ± 0.25

43.2 ± 0.18

44.8 ± 0.22

49.2 ± 0.57

0.59 ± 0.00

ABMIL19

81.8 ± 1.39

87.0 ± 1.18

52.9 ± 1.63

51.0 ± 1.48

51.5 ± 0.42

0.75 ± 0.02

Gate-ABMIL19

81.9 ± 2.04

87.5 ± 0.13

53.1 ± 2.83

51.3 ± 2.61

51.7 ± 1.01

0.75 ± 0.02

CLAM-SB25

82.8 ± 1.73

87.0 ± 0.76

54.2 ± 2.32

52.3 ± 1.95

52.0 ± 0.88

0.76 ± 0.02

CLAM-MB25

87.2 ± 0.80

89.3 ± 0.41

61.4 ± 2.12

59.6 ± 2.69

61.2 ± 7.85

0.82 ± 0.01

DSMIL34

86.2 ± 1.32

87.8 ± 0.86

56.4 ± 2.37

56.2 ± 1.95

56.5 ± 1.79

0.76 ± 0.02

TransMIL24

83.8 ± 1.00

88.9 ± 1.15

58.9 ± 5.70

56.9 ± 4.14

56.7 ± 2.78

0.71 ± 0.02

DTFD35

84.3 ± 1.81

86.7 ± 0.95

52.1 ± 1.79

51.2 ± 1.12

51.3 ± 0.19

0.77 ± 0.01

AMD-MIL33

86.4 ± 0.97

89.0 ± 0.67

61.9 ± 3.01

59.6 ± 3.07

58.4 ± 2.66

0.78 ± 0.03

WiKG36

87.1 ± 1.20

88.2 ± 1.64

57.9 ± 2.76

56.6 ± 2.13

55.8 ± 1.86

0.80 ± 0.03

FR-MIL37

80.6 ± 1.59

87.0 ± 5.90

57.5 ± 6.19

55.3 ± 4.36

54.8 ± 3.49

0.63 ± 0.02

UNI4 (WSIs pre-trained)

Max-MIL

79.6 ± 10.07

77.9 ± 11.95

41.3 ± 10.87

39.1 ± 9.87

41.1 ± 2.10

0.55 ± 0.35

Mean-MIL

76.5 ± 2.02

81.6 ± 0.26

46.4 ± 0.70

46.8 ± 1.09

49.4 ± 0.83

0.49 ± 0.06

ABMIL19

82.1 ± 1.60

92.3 ± 0.64

67.7 ± 1.51

61.9 ± 1.47

59.6 ± 1.29

0.72 ± 0.02

Gate-ABMIL19

81.0 ± 0.86

92.2 ± 0.28

65.7 ± 4.13

59.7 ± 3.14

57.9 ± 2.48

0.68 ± 0.05

CLAM-SB25

81.3 ± 1.07

93.1 ± 0.22

64.8 ± 6.08

58.5 ± 4.25

56.5 ± 3.85

0.73 ± 0.07

CLAM-MB25

85.0 ± 0.68

95.9 ± 0.21

74.5 ± 8.42

65.6 ± 3.72

63.4 ± 3.06

0.70 ± 0.08

DSMIL34

85.9 ± 3.17

93.1 ± 2.26

62.6 ± 5.28

59.9 ± 3.16

59.0 ± 1.35

0.75 ± 0.05

TransMIL24

88.5 ± 0.44

95.2 ± 0.93

70.4 ± 1.88

65.7 ± 1.97

66.1 ± 6.04

0.78 ± 0.06

DTFD35

82.6 ± 0.56

94.5 ± 0.31

61.0 ± 4.13

56.5 ± 4.67

56.6 ± 5.77

0.78 ± 0.01

AMD-MIL33

86.0 ± 1.12

94.8 ± 0.13

73.6 ± 3.45

68.5 ± 1.14

66.8 ± 2.55

0.78 ± 0.03

WiKG36

83.1 ± 3.56

95.0 ± 0.42

73.3 ± 1.91

64.6 ± 3.19

62.6 ± 1.50

0.68 ± 0.03

FR-MIL37

85.0 ± 0.97

96.0 ± 0.46

78.3 ± 4.48

68.0 ± 1.51

65.4 ± 1.22

0.70 ± 0.09

Gigapath5 (WSIs pre-trained)

Max-MIL

83.7 ± 2.77

83.4 ± 3.83

47.3 ± 0.92

45.9 ± 0.76

44.9 ± 1.69

0.75 ± 0.03

Mean-MIL

76.1 ± 4.24

81.3 ± 0.55

49.7 ± 3.29

49.5 ± 0.91

52.1 ± 1.32

0.51 ± 0.06

ABMIL19

81.4 ± 0.49

91.8 ± 0.70

66.6 ± 2.55

61.6 ± 2.21

59.8 ± 2.55

0.75 ± 0.03

Gate-ABMIL19

81.4 ± 1.73

92.7 ± 0.73

70.6 ± 1.69

63.2 ± 2.80

61.1 ± 2.50

0.72 ± 0.07

CLAM-SB25

78.7 ± 2.33

92.6 ± 0.38

59.9 ± 2.54

54.8 ± 1.68

55.2 ± 4.44

0.72 ± 0.08

CLAM-MB25

84.4 ± 1.92

96.5 ± 0.44

81.1 ± 3.75

68.5 ± 0.39

65.6 ± 0.30

0.64 ± 0.09

DSMIL34

86.2 ± 0.85

93.5 ± 0.61

68.8 ± 4.85

65.2 ± 3.73

63.8 ± 3.42

0.75 ± 0.06

TransMIL24

86.2 ± 0.76

95.6 ± 0.36

73.4 ± 4.51

67.9 ± 4.69

66.5 ± 4.56

0.80 ± 0.02

DTFD35

80.9 ± 1.18

93.4 ± 0.81

58.1 ± 2.52

52.7 ± 1.53

53.5 ± 1.32

0.76 ± 0.02

AMD-MIL33

84.6 ± 1.20

95.0 ± 0.41

72.9 ± 1.31

66.4 ± 1.12

64.9 ± 2.85

0.75 ± 0.07

WiKG36

83.8 ± 1.41

94.4 ± 0.52

73.8 ± 2.83

66.0 ± 2.31

63.8 ± 1.39

0.74 ± 0.04

FR-MIL37

85.9 ± 0.88

95.4 ± 0.89

79.7 ± 6.78

69.2 ± 2.62

65.7 ± 1.82

0.72 ± 0.04