Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Depth-resolved carbon dioxide and methane concentrations in 522 lakes, ponds, and reservoirs worldwide
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 19 February 2026

Depth-resolved carbon dioxide and methane concentrations in 522 lakes, ponds, and reservoirs worldwide

  • Joseph S. Rabaey  ORCID: orcid.org/0000-0002-9649-48551,
  • Abigail S. L. Lewis  ORCID: orcid.org/0000-0001-9933-45422,
  • Katrin Attermeyer  ORCID: orcid.org/0000-0002-6503-94973,4,
  • Patrick Aurich5,
  • Sheel Bansal  ORCID: orcid.org/0000-0003-1233-17076,
  • Maciej Bartosiewicz7,
  • Brittni L. Bertolet8,
  • Ingeborg Bussmann  ORCID: orcid.org/0000-0002-1197-74619,
  • Sarah B. Cadieux10,
  • Elisa Calamita  ORCID: orcid.org/0000-0002-2614-294211,
  • Camilla Capelli  ORCID: orcid.org/0000-0002-4617-305X12,
  • Cayelan C. Carey  ORCID: orcid.org/0000-0001-8835-447613,
  • Carmen Cillero14,
  • Francois Clayer15,
  • Sofia L. D’Ambrosio  ORCID: orcid.org/0000-0003-2737-148816,
  • Thomas A. Davidson17,
  • Bridget R. Deemer  ORCID: orcid.org/0000-0002-5845-100218,
  • Blaize A. Denfeld19,
  • Werner Eckert20,
  • Chiara Esposito17,
  • Phillip Ford21,
  • Adrianna Gorsky22,
  • Natalie A. Griffiths  ORCID: orcid.org/0000-0003-0068-771423,
  • Hans-Peter F. Grossart  ORCID: orcid.org/0000-0002-9141-032524,25,
  • David P. Hamilton  ORCID: orcid.org/0000-0002-9341-877726,
  • Meredith A. Holgerson27,
  • Brian J. Huser19,
  • Tomoya Iwata28,
  • Joachim Jansen  ORCID: orcid.org/0000-0001-5965-766229,
  • Stuart E. Jones  ORCID: orcid.org/0000-0003-4740-672130,
  • Sari Juutinen  ORCID: orcid.org/0000-0002-7752-195031,
  • Pirkko Kortelainen  ORCID: orcid.org/0000-0002-1448-068832,
  • Matthias Koschorreck  ORCID: orcid.org/0000-0002-4393-35005,
  • Theis Kragh33,
  • Alo Laas  ORCID: orcid.org/0000-0002-4801-037714,
  • Tuula Larmola34,
  • Saskia Läubli35,
  • Isabelle Laurion36,
  • Moritz F. Lehmann  ORCID: orcid.org/0000-0003-0626-594237,
  • Liu Liu  ORCID: orcid.org/0000-0002-8056-255038,
  • Pertti J. Martikainen39,
  • Anna Matoušů  ORCID: orcid.org/0000-0003-4226-680340,
  • Stephen A. McCord41,
  • Jorge J. Montes-Pérez42,
  • Daniele Nizzoli43,
  • César Ordóñez  ORCID: orcid.org/0000-0001-6295-769044,
  • Mike Peacock19,45,
  • Rachel M. Pilla23,
  • Vilmantas Prėskienis46,47,
  • Junbing Pu48,
  • Tenna Riis  ORCID: orcid.org/0000-0003-2501-444449,
  • Taija Saarela  ORCID: orcid.org/0000-0002-4618-122839,
  • Arianto B. Santoso50,
  • Carsten J. Schubert  ORCID: orcid.org/0000-0003-1668-596751,
  • Armando Sepulveda-Jauregui  ORCID: orcid.org/0000-0001-7777-452024,52,
  • Bradford S. Sherman21,53,
  • Jonas S. Sø  ORCID: orcid.org/0000-0002-3222-370633,
  • Katherine J. Stenehjem  ORCID: orcid.org/0000-0003-0233-275727,
  • Kristin E. D. Strock  ORCID: orcid.org/0000-0003-3758-936854,
  • Kenji Tsuchiya  ORCID: orcid.org/0000-0002-6644-170155,
  • Katrin Wendt-Potthoff5,
  • Gesa A. Weyhenmeyer  ORCID: orcid.org/0000-0002-4013-228156,
  • Petr Znachor40 &
  • …
  • Jakob Zopfi  ORCID: orcid.org/0000-0002-8437-734437 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon cycle
  • Limnology

Abstract

Lakes, ponds, and reservoirs (hereafter: “lakes”) are important sources of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Emissions of CO2 and CH4 from lakes are regulated in part by in-lake processes, including the production and storage of gases in the lower parts of the water column (bottom waters). However, while substantial efforts have been made to improve estimates of greenhouse gas emissions from lakes, limited data on gas concentrations along depth profiles have prevented the incorporation of bottom-water processes in global emission estimates. Here, we present GHG-depths: the largest existing dataset of depth-profile CO2 and CH4 measurements worldwide, including 522 lakes across 38 countries and all seven continents. These data include contributions from 45 research teams and 56 published studies, totaling 2558 discrete sampling events. As global change continues to alter biogeochemical cycling in lakes, these data can help improve mechanistic models to better predict greenhouse gas production and emission from lakes worldwide.

Similar content being viewed by others

Future methane emissions from lakes and reservoirs

Article Open access 04 November 2025

Trace gas (CH4, N2O, H2S) distribution in the water column of inland lakes in Poland

Article Open access 04 December 2025

Global lake phytoplankton proliferation intensifies climate warming

Article Open access 04 December 2024

Data availability

Data are available in the Environmental Data Initiative repository31, and accessible at https://doi.org/10.6073/pasta/2b72b89bbfbb3da0e198f392a9cbad18.

Code availability

All data compilation and figure generation was conducted using R statistical software132. Code used to generate figures, validate data, and generate the analysis-ready compiled greenhouse gas data file (“Processed GHG data”) is available in an open-source GitHub repository (https://doi.org/10.5281/zenodo.17782010).

References

  1. Cole, J. J. et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 10, 172–185 (2007).

    Google Scholar 

  2. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Google Scholar 

  3. Lauerwald, R. et al. Inland Water Greenhouse Gas Budgets for RECCAP2: 2. Regionalization and Homogenization of Estimates. Global Biogeochemical Cycles 37, e2022GB007658 (2023).

    Google Scholar 

  4. Saunois, M. et al. Global Methane Budget 2000–2020. Earth Syst. Sci. Data 17, 1873–1958 (2025).

    Google Scholar 

  5. Weyhenmeyer, G. A. et al. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nature Geosci 8, 933–936 (2015).

    Google Scholar 

  6. Guo, M. et al. Linking Biogeochemical and Hydrodynamic Processes to Model Methane Fluxes in Shallow, Tropical Floodplain Lakes. J Adv Model Earth Syst 15, e2022MS003385 (2023).

    Google Scholar 

  7. Soued, C. & Prairie, Y. T. Changing sources and processes sustaining surface CO2 and CH4 fluxes along a tropical river to reservoir system. Biogeosciences 18, 1333–1350 (2021).

    Google Scholar 

  8. Zhang, L. et al. System‐Wide Greenhouse Gas Emissions From Mountain Reservoirs Draining Permafrost Catchments on the Qinghai‐Tibet Plateau. Global Biogeochemical Cycles 38, e2024GB008112 (2024).

    Google Scholar 

  9. Bastviken, D., Cole, J. J., Pace, M. L. & Van de Bogert, M. C. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. J. Geophys. Res. 113, n/a–n/a (2008).

    Google Scholar 

  10. Rabaey, J. S. & Cotner, J. B. The influence of mixing on seasonal carbon dioxide and methane fluxes in ponds. Biogeochemistry https://doi.org/10.1007/s10533-024-01167-7 (2024).

    Google Scholar 

  11. Jansen, J. et al. Climate‐Sensitive Controls on Large Spring Emissions of CH4 and CO2 From Northern Lakes. J. Geophys. Res. Biogeosci. 124, 2379–2399 (2019).

    Google Scholar 

  12. Kankaala, P., Huotari, J., Tulonen, T. & Ojala, A. Lake-size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscape. Limnol. Oceanogr. 58, 1915–1930 (2013).

    Google Scholar 

  13. Kortelainen, P. et al. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12, 1554–1567 (2006).

    Google Scholar 

  14. Calamita, E. et al. Unaccounted CO2 leaks downstream of a large tropical hydroelectric reservoir. Proc. Natl. Acad. Sci. USA. 118, e2026004118 (2021).

    Google Scholar 

  15. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Google Scholar 

  16. Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geosci 9, 222–226 (2016).

    Google Scholar 

  17. Johnson, M. S., Matthews, E., Du, J., Genovese, V. & Bastviken, D. Methane Emission From Global Lakes: New Spatiotemporal Data and Observation‐Driven Modeling of Methane Dynamics Indicates Lower Emissions. JGR Biogeosciences 127 (2022).

  18. Soued, C., Harrison, J. A., Mercier-Blais, S. & Prairie, Y. T. Reservoir CO2 and CH4 emissions and their climate impact over the period 1900–2060. Nat. Geosci. 15, 700–705 (2022).

    Google Scholar 

  19. Lapierre, J. et al. Continental‐scale variation in controls of summer CO2 in United States lakes. JGR Biogeosciences 122, 875–885 (2017).

    Google Scholar 

  20. Ray, N. E. et al. Spatial and temporal variability in summertime dissolved carbon dioxide and methane in temperate ponds and shallow lakes. Limnology & Oceanography lno.12362, https://doi.org/10.1002/lno.12362 (2023).

  21. DelSontro, T., Beaulieu, J. J. & Downing, J. A. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnol Oceanogr Lett 3, 64–75 (2018).

    Google Scholar 

  22. Laas, A. et al. Summer depth distribution profiles of dissolved CO2 and O2 in shallow temperate lakes reveal trophic state and lake type specific differences. Science of The Total Environment 566–567, 63–75 (2016).

    Google Scholar 

  23. Thottathil, S. D., Reis, P. C. J. & Prairie, Y. T. Methane oxidation kinetics in northern freshwater lakes. Biogeochemistry 143, 105–116 (2019).

    Google Scholar 

  24. Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18 (2004).

  25. Encinas Fernández, J., Peeters, F. & Hofmann, H. Importance of the Autumn Overturn and Anoxic Conditions in the Hypolimnion for the Annual Methane Emissions from a Temperate Lake. Environ. Sci. Technol. 48, 7297–7304 (2014).

    Google Scholar 

  26. Zimmermann, M. et al. Microbial methane oxidation efficiency and robustness during lake overturn. Limnol Oceanogr Letters 6, 320–328 (2021).

    Google Scholar 

  27. Denfeld, B. A., Baulch, H. M., del Giorgio, P. A., Hampton, S. E. & Karlsson, J. A synthesis of carbon dioxide and methane dynamics during the ice‐covered period of northern lakes. Limnol Oceanogr Lett 3, 117–131 (2018).

    Google Scholar 

  28. Davidson, T. A. et al. Temporary Stratification Promotes Large Greenhouse Gas Emissions in a Shallow Eutrophic Lake. Biogeosciences 21, 93–107 (2024).

  29. Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    Google Scholar 

  30. Woolway, R. I. et al. Phenological shifts in lake stratification under climate change. Nat Commun 12, 2318 (2021).

    Google Scholar 

  31. Rabaey, J. S. et al. GHG-depths: Greenhouse gas depth-profile data in 522 lakes worldwide. Environmental Data Initiative https://doi.org/10.6073/PASTA/2B72B89BBFBB3DA0E198F392A9CBAD18 (2026).

  32. Tan, Z. et al. A Lake Biogeochemistry Model for Global Methane Emissions: Model Development, Site‐Level Validation, and Global Applicability. J Adv Model Earth Syst 16, e2024MS004275 (2024).

    Google Scholar 

  33. Delwiche, K. B. et al. Estimating Drivers and Pathways for Hydroelectric Reservoir Methane Emissions Using a New Mechanistic Model. JGR Biogeosciences 127, e2022JG006908 (2022).

    Google Scholar 

  34. Zhuang, Q. et al. Current and Future Global Lake Methane Emissions: A Process‐Based Modeling Analysis. JGR Biogeosciences 128, e2022JG007137 (2023).

    Google Scholar 

  35. Khatun, S. et al. Aerobic methane production by planktonic microbes in lakes. Science of The Total Environment 696, 133916 (2019).

    Google Scholar 

  36. Blees, J. et al. Bacterial methanotrophs drive the formation of a seasonal anoxic benthic nepheloid layer in an alpine lake. Limnology & Oceanography 59, 1410–1420 (2014).

    Google Scholar 

  37. Saarela, T. et al. CH4 oxidation in a boreal lake during the development of hypolimnetic hypoxia. Aquat Sci 82, 19 (2020).

    Google Scholar 

  38. Coulombe, S. et al. Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain. The Cryosphere 16, 2837–2857 (2022).

    Google Scholar 

  39. Friese, K. et al. Ecological response of two hydro‐morphological similar pre‐dams to contrasting land‐use in the Rappbode reservoir system (Germany). Internat. Rev. Hydrobiol. 99, 335–349 (2014).

    Google Scholar 

  40. Cadieux, S. B., White, J. R. & Pratt, L. M. Exceptional summer warming leads to contrasting outcomes for methane cycling in small Arctic lakes of Greenland. Biogeosciences 14, 559–574 (2017).

    Google Scholar 

  41. Sherman, B. S. & Ford, P. W. Extreme Hydrological Events and Reservoir Methane Emissions. Front. Environ. Sci. 10, 893180 (2022).

    Google Scholar 

  42. Bussmann, I., Damm, E., Schlüter, M. & Wessels, M. Fate of methane bubbles released by pockmarks in Lake Constance. Biogeochemistry 112, 613–623 (2013).

    Google Scholar 

  43. B Tangen & S Bansal. Greenhouse gas concentrations and water-quality parameters from experimental ponds in North Dakota, USA, 2019. U.S. Geological Survey https://doi.org/10.5066/P13WTATH (2025).

  44. Riis, T. & Sand-Jensen, K. Growth Reconstruction and Photosynthesis of Aquatic Mosses: Influence of Light, Temperature and Carbon Dioxide at Depth. The Journal of Ecology 85, 359 (1997).

    Google Scholar 

  45. Denfeld, B. A., Lupon, A., Sponseller, R. A., Laudon, H. & Karlsson, J. Heterogeneous CO2 and CH4 patterns across space and time in a small boreal lake. Inland Waters 10, 348–359 (2020).

    Google Scholar 

  46. Santoso, A. B., Hamilton, D. P., Schipper, L. A., Ostrovsky, I. S. & Hendy, C. H. High contribution of methane in greenhouse gas emissions from a eutrophic lake: a mass balance synthesis. New Zealand Journal of Marine and Freshwater Research 55, 411–430 (2021).

    Google Scholar 

  47. Montes-Pérez, J. J. et al. Hydrology influences carbon flux through metabolic pathways in the hypolimnion of a Mediterranean reservoir. Aquat Sci 84, 36 (2022).

    Google Scholar 

  48. D’Ambrosio, S. L., Henderson, S. M., Nielson, J. R. & Harrison, J. A. In situ flux estimates reveal large variations in methane flux across the bottom boundary layer of a eutrophic lake. Limnology & Oceanography 67, 2119–2139 (2022).

    Google Scholar 

  49. Khatun, S. et al. Linking Stoichiometric Organic Carbon–Nitrogen Relationships to planktonic Cyanobacteria and Subsurface Methane Maximum in Deep Freshwater Lakes. Water 12, 402 (2020).

    Google Scholar 

  50. Juutinen, S. et al. Methane dynamics in different boreal lake types. Biogeosciences 6, 209–223 (2009).

    Google Scholar 

  51. Solomon, C. et al. MFE database: Data from ecosystem ecology research by Jones, Solomon, and collaborators on the ecology and biogeochemistry of lakes and lake organisms in the Upper Midwest, USA. 1477482372 Bytes Cary Institute https://doi.org/10.25390/CARYINSTITUTE.7438598.V6 (2022).

  52. Blees, J. et al. Micro‐aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south‐Alpine Lake Lugano (Switzerland). Limnology & Oceanography 59, 311–324 (2014).

    Google Scholar 

  53. Calamita, E. Modelling the effects of large dams on water quality in tropical rivers. 168 p. https://doi.org/10.3929/ETHZ-B-000476521 (ETH Zurich, 2020).

  54. Znachor, P. et al. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir. Science of The Total Environment 624, 24–33 (2018).

    Google Scholar 

  55. Schubert, C. J. et al. Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat. Sci. 72, 455–466 (2010).

    Google Scholar 

  56. Strock, K. E., Krewson, R. B., Hayes, N. M. & Deemer, B. R. Oxidation is a potentially significant methane sink in land-terminating glacial runoff. Sci Rep 14 (2024).

  57. Rabaey, J. & Cotner, J. Pond greenhouse gas emissions controlled by duckweed coverage. Front. Environ. Sci. 10, 889289 (2022).

    Google Scholar 

  58. Kusakabe, M., Tanyileke, G. Z., McCord, S. A. & Schladow, S. G. Recent pH and CO2 profiles at Lakes Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation. Journal of Volcanology and Geothermal Research 97, 241–260 (2000).

    Google Scholar 

  59. Rinke, K. et al. Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69, 523–536 (2013).

    Google Scholar 

  60. Prėskienis, V. et al. Seasonal patterns in greenhouse gas emissions from lakes and ponds in a High Arctic polygonal landscape. Limnology & Oceanography 66 (2021).

  61. Carey, C. C. et al. Secchi depth data and discrete depth profiles of photosynthetically active radiation, temperature, dissolved oxygen, and pH for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013-2021. Environmental Data Initiative https://doi.org/10.6073/PASTA/887D8AB8C57FB8FDF3582507F3223CD6 (2022).

  62. Pilla, R. M. et al. Shifts in Carbon Emissions Versus Sequestration From Hydropower Reservoirs in the Southeastern United States. JGR Biogeosciences 129, e2023JG007580 (2024).

    Google Scholar 

  63. Gorsky, A. L., Dugan, H. A. & Lottig, N. A. Snow Manipulation Greenhouse Gas Measurements at South Sparkling and Trout Bog 2020-2021. Environmental Data Initiative https://doi.org/10.6073/PASTA/C2EBDE22CEB28B75B52E827479F5C540 (2022).

  64. Natchimuthu, S., Sundgren, I., Gålfalk, M., Klemedtsson, L. & Bastviken, D. Spatiotemporal variability of lake pCO2 and CO2 fluxes in a hemiboreal catchment. JGR Biogeosciences 122, 30–49 (2017).

    Google Scholar 

  65. Liu, L. et al. Strong Subseasonal Variability of Oxic Methane Production Challenges Methane Budgeting in Freshwater Lakes. Environ. Sci. Technol. 58, 19690–19701 (2024).

    Google Scholar 

  66. Thalasso, F. et al. Sub-oxycline methane oxidation can fully uptake CH4 produced in sediments: case study of a lake in Siberia. Sci Rep 10, 3423 (2020).

    Google Scholar 

  67. Eckert, W. & Conrad, R. Sulfide and methane evolution in the hypolimnion of a subtropical lake: a three-year study. Biogeochemistry 82, 67–76 (2007).

    Google Scholar 

  68. Deemer, B. R. & Harrison, J. A. Summer Redox Dynamics in a Eutrophic Reservoir and Sensitivity to a Summer’s End Drawdown Event. Ecosystems 22, 1618–1632 (2019).

    Google Scholar 

  69. Lavergne, C. et al. Temperature differently affected methanogenic pathways and microbial communities in sub-Antarctic freshwater ecosystems. Environment International 154, 106575 (2021).

    Google Scholar 

  70. Carey, C. C. et al. Time series of dissolved methane and carbon dioxide concentrations for Falling Creek Reservoir and Beaverdam Reservoir in southwestern Virginia, USA during 2015-2023. Environmental Data Initiative https://doi.org/10.6073/PASTA/5A45F25BA0440A5EFD32177A9103FB5F (2024).

  71. Carey, C. C., Breef-Pilz, A., Lewis, A. S. & Hoffman, K. K. Time series of high-frequency profiles of depth, temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, turbidity, pH, oxidation-reduction potential, photosynthetically active radiation, colored dissolved organic matter, phycocyanin, phycoerythrin, and descent rate for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013–2024. Environmental Data Initiative https://doi.org/10.6073/PASTA/75D1C9A57A49030C468AB19DB3643C36 (2025).

  72. Li, J., Pu, J. & Zhang, T. Transport and transformation of dissolved inorganic carbon in a subtropical groundwater-fed reservoir, south China. Water Research 209, 117905 (2022).

    Google Scholar 

  73. Laurion, I. et al. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnology & Oceanography 55, 115–133 (2010).

    Google Scholar 

  74. Su, G. et al. Water column dynamics control nitrite-dependent anaerobic methane oxidation by Candidatus “Methylomirabilis” in stratified lake basins. The ISME Journal 17, 693–702 (2023).

    Google Scholar 

  75. Ohba, T. et al. A Depression Containing CO2-Enriched Water at the Bottom of Lake Monoun, Cameroon, and Implications for the 1984 Limnic Eruption. Front. Earth Sci. 10, 766791 (2022).

    Google Scholar 

  76. Wann, J. K., Chen, C. T. A. & Wang, B. J. A Seasonally Anoxic Mountain Lake with an Active Fe Cycle in Tropical Taiwan. Aquatic Geochemistry 3, 21–42 (1997).

    Google Scholar 

  77. Oswald, K. et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnology & Oceanography 61 (2016).

  78. Nojiri, Y. et al. An estimate of CO2 flux in Lake Nyos, Cameroon. Limnology & Oceanography 38, 739–752 (1993).

    Google Scholar 

  79. Haberyan, K. A., Horn, S. P. & Umaña, G. Basic limnology of fifty-one lakes in Costa Rica. Rev Biol Trop 51, 107–122 (2003).

    Google Scholar 

  80. Cabassi, J. et al. Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central–Southern Italy). Bull Volcanol 75, 683 (2013).

    Google Scholar 

  81. Wand, U., Samarkin, V. A., Nitzsche, H.-M. & Hubberten, H.-W. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnol. Oceanogr. 51, 1180–1194 (2006).

    Google Scholar 

  82. Mendoza‐Pascual, M. U. et al. Controlling Factors of Methane in Tropical Lakes of Different Depths. JGR Biogeosciences 126, e2020JG005828 (2021).

    Google Scholar 

  83. Sibert, R. J., Koretsky, C. M. & Wyman, D. A. Cultural meromixis: Effects of road salt on the chemical stratification of an urban kettle lake. Chemical Geology 395, 126–137 (2015).

    Google Scholar 

  84. Narvenkar, G. et al. Dissolved methane in Indian freshwater reservoirs. Environ Monit Assess 185, 6989–6999 (2013).

    Google Scholar 

  85. Miyajima, T. et al. Distribution of greenhouse gases, nitrite, and δ13C of dissolved inorganic carbon in Lake Biwa: Implications for hypolimnetic metabolism. Biogeochemistry 36, 205–221 (1997).

    Google Scholar 

  86. Yang, Z., Tang, C., Li, X., Zhang, H. & Cai, Y. Dynamics of dissolved greenhouse gas response to seasonal water mixing in subtropical reservoirs. Environ Monit Assess 191, 639 (2019).

    Google Scholar 

  87. Utsumi, M. et al. Dynamics of dissolved methane and methane oxidation in dimictic Lake Nojiri during winter. Limnol. Oceanogr. 43, 10–17 (1998).

    Google Scholar 

  88. Salk, K. R. et al. Ecosystem metabolism and greenhouse gas production in a mesotrophic northern temperate lake experiencing seasonal hypoxia. Biogeochemistry 131, 303–319 (2016).

    Google Scholar 

  89. Matthews, D. A., Effler, S. W., Driscoll, C. T., O’Donnell, S. M. & Matthews, C. M. Electron budgets for the hypolimnion of a recovering urban lake, 1989‐2004: Response to changes in organic carbon deposition and availability of electron acceptors. Limnology & Oceanography 53, 743–759 (2008).

    Google Scholar 

  90. Caliro, S. et al. Geochemical and biochemical evidence of lake overturn and fish kill at Lake Averno, Italy. Journal of Volcanology and Geothermal Research 178, 305–316 (2008).

    Google Scholar 

  91. Bartosiewicz, M., Laurion, I. & MacIntyre, S. Greenhouse gas emission and storage in a small shallow lake. Hydrobiologia 757, 101–115 (2015).

    Google Scholar 

  92. McManus, J., Heinen, E. A. & Baehr, M. M. Hypolimnetic oxidation rates in Lake Superior: Role of dissolved organic material on the lake’s carbon budget. Limnology & Oceanography 48, 1624–1632 (2003).

    Google Scholar 

  93. Sugahara, S. et al. Influence of hypersaturated dissolved oxygenated water on the elution of hydrogen sulfide and methane from sediment in the dredged area in polyhaline Lake Nakaumi. Landscape Ecol Eng 11, 269–282 (2015).

    Google Scholar 

  94. Essert, V., Masclaux, H., Verneaux, V. & Millet, L. Influence of thermal regime, oxygen conditions and land use on source and pathways of carbon in lake pelagic food webs. Écoscience 29, 293–310 (2022).

    Google Scholar 

  95. Vachon, D., Langenegger, T., Donis, D. & McGinnis, D. F. Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake. Limnology & Oceanography 64, 2114–2128 (2019).

    Google Scholar 

  96. Murase, J. & Sugimoto, A. Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan). Limnol. Oceanogr. 50, 1339–1343 (2005).

    Google Scholar 

  97. Oswald, K. et al. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes. PLoS ONE 10, e0132574 (2015).

    Google Scholar 

  98. Deshmukh, C. et al. Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences 13, 1919–1932 (2016).

    Google Scholar 

  99. Tassi, F. et al. Mechanisms regulating CO2 and CH4 dynamics in the Azorean volcanic lakes (São Miguel Island, Portugal): Bio-geochemistry of volcanic lakes in the Azores, Portugal. J Limnol 77 (2018).

  100. Thalasso, F. et al. Methane and carbon dioxide cycles in lakes of the King George Island, maritime Antarctica. Science of The Total Environment 848, 157485 (2022).

    Google Scholar 

  101. Guérin, F. et al. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophysical Research Letters 33, 2006GL027929 (2006).

    Google Scholar 

  102. Bastviken, D., Ejlertsson, J., Sundh, I. & Tranvik, L. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84, 969–981 (2003).

    Google Scholar 

  103. Delwiche, K. B. & Hemond, H. F. Methane Bubble Size Distributions, Flux, and Dissolution in a Freshwater Lake. Environ. Sci. Technol. 51, 13733–13739 (2017).

    Google Scholar 

  104. Liu, R., Hofmann, A., Gülaçar, F. O., Favarger, P.-Y. & Dominik, J. Methane concentration profiles in a lake with a permanently anoxic hypolimnion (Lake Lugano, Switzerland-Italy). Chemical Geology 133, 201–209 (1996).

    Google Scholar 

  105. Liikanen, A., Huttunen, J. T., Valli, K. & Martikainen, P. J. Methane cycling in the sediment and water column of mid-boreal hyper-eutrophic Lake Kevätön, Finland. fal 154, 585–603 (2002).

    Google Scholar 

  106. Gar’kusha, D. N., Fedorov, Y. A., Tambieva, N. S., Andreev, Y. A. & Adzhiev, R. A. Methane Distribution in Lake Baikal Water. Water Resour 50, 400–414 (2023).

    Google Scholar 

  107. Casper, P., Chim Chan, O., Furtado, A. L. S. & Adams, D. D. Methane in an acidic bog lake: The influence of peat in the catchment on the biogeochemistry of methane. Aquatic Sciences - Research Across Boundaries 65, 36–46 (2003).

    Google Scholar 

  108. Van Grinsven, S. et al. Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics. Biogeosciences 18, 3087–3101 (2021).

    Google Scholar 

  109. Joung, D., Leonte, M. & Kessler, J. D. Methane Sources in the Waters of Lake Michigan and Lake Superior as Revealed by Natural Radiocarbon Measurements. Geophysical Research Letters 46, 5436–5444 (2019).

    Google Scholar 

  110. Oswald, K. et al. Methanotrophy under Versatile Conditions in the Water Column of the Ferruginous Meromictic Lake La Cruz (Spain). Front. Microbiol. 7 (2016).

  111. Kallistova, A. et al. Microbial communities involved in aerobic and anaerobic methane cycling in a meromictic ferruginous subarctic lake. Aquat. Microb. Ecol. 82, 1–18 (2018).

    Google Scholar 

  112. Savvichev, A. S. et al. Microbial Processes and Microbial Communities in the Water Column of the Polar Meromictic Lake Bol’shie Khruslomeny at the White Sea Coast. Front. Microbiol. 11, 1945 (2020).

    Google Scholar 

  113. Fernandez, L., Bertilsson, S. & Peura, S. Non‐cyanobacterial diazotrophs dominate nitrogen‐fixing communities in permafrost thaw ponds. Limnology & Oceanography 65 (2020).

  114. Kankaala, P., Taipale, S., Nykänen, H. & Jones, R. I. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J. Geophys. Res. 112, 2006JG000336 (2007).

    Google Scholar 

  115. Kirf, M. K. et al. Redox gradients at the low oxygen boundary of lakes. Aquat Sci 77, 81–93 (2015).

    Google Scholar 

  116. Guérin, F. & Abril, G. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J. Geophys. Res. 112, 2006JG000393 (2007).

    Google Scholar 

  117. Murase, J., Sakai, Y., Sugimoto, A., Okubo, K. & Sakamoto, M. Sources of dissolved methane in Lake Biwa. Limnology 4, 91–99 (2003).

    Google Scholar 

  118. Beamud, S. G., Diaz, M. M. & Pedrozo, F. L. Summer phytoplankton composition and nitrogen limitation of the deep, naturally-acidic (pH∼2.2) Lake Caviahue, Patagonia, Argentina. Limnologica 37, 37–48 (2007).

    Google Scholar 

  119. Gunkel, G., Beulker, C., Grupe, B. & Viteri, F. Survey and assessment of post volcanic activities of a young caldera lake, Lake Cuicocha, Ecuador. Nat. Hazards Earth Syst. Sci. 9, 699–712 (2009).

    Google Scholar 

  120. Tassi, F. et al. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PLoS ONE 13, e0193914 (2018).

    Google Scholar 

  121. Smith, R. L., Miller, L. G. & Howes, B. L. The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, antarctic lake. Biogeochemistry 21, 95–115 (1993).

    Google Scholar 

  122. Dupuis, D., Sprague, E., Docherty, K. M. & Koretsky, C. M. The influence of road salt on seasonal mixing, redox stratification and methane concentrations in urban kettle lakes. Science of The Total Environment 661, 514–521 (2019).

    Google Scholar 

  123. Ertefai, T. F. et al. Vertical distribution of microbial lipids and functional genes in chemically distinct layers of a highly polluted meromictic lake. Organic Geochemistry 39, 1572–1588 (2008).

    Google Scholar 

  124. Cruz, J. V., Antunes, P., Amaral, C., França, Z. & Nunes, J. C. Volcanic lakes of the Azores archipelago (Portugal): Geological setting and geochemical characterization. Journal of Volcanology and Geothermal Research 156, 135–157 (2006).

    Google Scholar 

  125. Kalinkina, N., Tekanova, E., Korosov, A., Zobkov, M. & Ryzhakov, A. What is the extent of water brownification in Lake Onego, Russia? Journal of Great Lakes Research 46, 850–861 (2020).

    Google Scholar 

  126. Soria‐Píriz, S. et al. What supports the deep chlorophyll maximum in acidic lakes? The role of the bacterial CO2 production in the hypolimnion. Limnology & Oceanography 65, 1318–1335 (2020).

    Google Scholar 

  127. Zhao, Y., Wu, B. F. & Zeng, Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences 10, 1219–1230 (2013).

    Google Scholar 

  128. Kraemer, B. M. Rethinking discretization to advance limnology amid the ongoing information explosion. Water Research 8 (2020).

  129. Carlson, R. E. A trophic state index for lakes1: Trophic state index. Limnol. Oceanogr. 22, 361–369 (1977).

    Google Scholar 

  130. Richardson, D. C. et al. A functional definition to distinguish ponds from lakes and wetlands. Sci Rep 12, 10472 (2022).

    Google Scholar 

  131. Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun 7, 13603 (2016).

    Google Scholar 

  132. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2022).

  133. McAuliffe, C. Gas chromatographic determination of solutes by multiple phase equilibrium. Chem Technol 1, 46–51 (1971).

    Google Scholar 

  134. Magen, C. et al. A simple headspace equilibration method for measuring dissolved methane. Limnology & Ocean Methods 12, 637–650 (2014).

    Google Scholar 

  135. Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. 1.0.1 https://doi.org/10.32614/CRAN.package.rnaturalearth (2017).

Download references

Acknowledgements

This work was conceived at the Global Lake Ecological Observatory Network (GLEON) meeting in New York in 2022. Funding and support for this work came from the following sources: the Minnesota Environment and Natural Resources Trust Fund as recommended by the Minnesota Aquatic Invasive Species Research Center (MAISRC) and the Legislative-Citizen Commission on Minnesota Resources (LCCMR); the Smithsonian Climate Change Fellowship; the U.S. Geological Survey Ecosystems Land Change Science Program and U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (Grant DE-SC0023084); the Polish Science Foundation grant 2020/39/I/ST10/02129; the Virginia Reservoirs LTREB monitoring program and team, supported by the U.S. National Science Foundation grants DEB-2327030 and EF-2318861; the NSF Graduate Research Fellowship Program to SLD under Grant #1347973 and #1842493; the European Union’s Horizon 2020 research and innovation programmes under grant agreement No 869296—The PONDERFUL Project; the Swedish Infrastructure for Ecosystem Science (SITES); the Israel Science Foundation; the Oak Ridge National Laboratory (ORNL), supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Water Power Technologies Office. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. R. Trent Jett, Michael Jones, Nikki Jones, Allison Fortner, Jana Phillips, and Chloe Faehndrich supported in field data collection; DFG (The German Research Foundation) “Aquameth” projects, GR1540/21-1 & 21-2 and projects 36207363, 197083521 & 184075001; the Bay of Plenty Regional Council, New Zealand; FORMAS (The Swedish Research Council) grant, numbers 2016–00846, 2020-00950, and 2020-06460, Roger Valdén, Joel Segersten, Patrick M. Crill, and Martin Wik supported in field data collection; the Japan Society for the Promotion of Science; the Research Council of Finland; the Finnish Environment Institute; the FERRO project: 101157743 — HORIZON-MISS-2023-OCEAN-01; the Estonian Research Council, grants (PRG1167, and PRG709); the Finnish Cultural Foundation; the DIWA project; the New Zealand ASEAN Scholarship; ERANET-LAC project METHANOBASE (ELAC2014 DCC-0092); the National Geographic Society; the Czech Science Foundation project No. 22-33245S; the limnological campaign on Lake Lugano coordinated by the International Commission for the Protection of Italian-Swiss Waters (CIPAIS), supported by funding from CIPAIS and Dipartimento del Territorio del Cantone Ticino. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

  1. Large Lakes Observatory, University of Minnesota-Duluth, Duluth, MN, USA

    Joseph S. Rabaey

  2. Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA

    Abigail S. L. Lewis

  3. WasserCluster Lunz - Biologische Station, Lunz am See, Austria

    Katrin Attermeyer

  4. Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria

    Katrin Attermeyer

  5. Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

    Patrick Aurich, Matthias Koschorreck & Katrin Wendt-Potthoff

  6. U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, USA

    Sheel Bansal

  7. Institute of Geophysics, Polish Academy of Science, Warsaw, Poland

    Maciej Bartosiewicz

  8. Department of Earth and Environmental Sciences, Rutgers University Newark, Newark, USA

    Brittni L. Bertolet

  9. Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Department of Shelf Sea System Ecology, Helgoland, Germany

    Ingeborg Bussmann

  10. Department of Earth and Environmental Sciences, Rensselear Polytechnic Institute, Troy, USA

    Sarah B. Cadieux

  11. Department of Geosciences, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany

    Elisa Calamita

  12. University of Applied Sciences and Arts of Southern Switzerland, Mendrisio, Switzerland

    Camilla Capelli

  13. Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA

    Cayelan C. Carey

  14. Chair of Hydrobiology and Fisheries, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia

    Carmen Cillero & Alo Laas

  15. Norwegian Institute for Water Research, Økernveien, Norway

    Francois Clayer

  16. University of Massachusetts Lowell, Lowell, USA

    Sofia L. D’Ambrosio

  17. Dept of Ecoscience, Aarhus University, Aarhus, Denmark

    Thomas A. Davidson & Chiara Esposito

  18. U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, Flagstaff, AZ, USA

    Bridget R. Deemer

  19. Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden

    Blaize A. Denfeld, Brian J. Huser & Mike Peacock

  20. Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Institute, Migdal, Israel

    Werner Eckert

  21. CSIRO, Canberra, Australia

    Phillip Ford & Bradford S. Sherman

  22. University of Wisconsin–Madison, Madison, USA

    Adrianna Gorsky

  23. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

    Natalie A. Griffiths & Rachel M. Pilla

  24. Deptartment of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany

    Hans-Peter F. Grossart & Armando Sepulveda-Jauregui

  25. Biochemistry and Biology, Potsdam University, Potsdam, Germany

    Hans-Peter F. Grossart

  26. Australian Rivers Institute, Griffith University, Griffith, Queensland, Australia

    David P. Hamilton

  27. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA

    Meredith A. Holgerson & Katherine J. Stenehjem

  28. Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan

    Tomoya Iwata

  29. Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland

    Joachim Jansen

  30. Robert B. Annis Water Resources Institute, Grand Valley State University, Allendale, USA

    Stuart E. Jones

  31. Finnish Meteorological Institute, Helsinki, Finland

    Sari Juutinen

  32. Finnish Environment Institute (Syke), Helsinki, Finland

    Pirkko Kortelainen

  33. University of Southern Denmark, Biological Institute, Campusvej 55, Odense, 5230, Denmark

    Theis Kragh & Jonas S. Sø

  34. Natural Resources Institute Finland (Luke), Helsinki, Finland

    Tuula Larmola

  35. Department of Environmental Sciences, University of Stockholm, Stockholm, Sweden

    Saskia Läubli

  36. Centre for Northern Studies and Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, Canada

    Isabelle Laurion

  37. Department of Environmental Science, University of Basel, Basel, Switzerland

    Moritz F. Lehmann & Jakob Zopfi

  38. Faculty of Geography, Yunnan Normal University, Kunming, China

    Liu Liu

  39. Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland

    Pertti J. Martikainen & Taija Saarela

  40. Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 370 05, České Budějovice, Czechia

    Anna Matoušů & Petr Znachor

  41. McCord Environmental and University of California Davis, Davis, CA, 95616, USA

    Stephen A. McCord

  42. Department of Ecology and Geology, Marine Ecology and Limnology Research Group, Universidad de Málaga, Málaga, Spain

    Jorge J. Montes-Pérez

  43. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy

    Daniele Nizzoli

  44. Aquatic Physics Group, Department F.-A. Forel for Environmental and Aquatic Sciences (DEFSE), Faculty of Science, University of Geneva, Geneva, Switzerland

    César Ordóñez

  45. Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom

    Mike Peacock

  46. Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, Canada

    Vilmantas Prėskienis

  47. Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Canada

    Vilmantas Prėskienis

  48. Karst Research Team, Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China

    Junbing Pu

  49. Department of Biology, Aarhus University, CIFAR Research Centre, Ole Worms Allé 1, 8000, Aarhus C, Denmark

    Tenna Riis

  50. Research Center for Limnology and Water Resources, Indonesia National Research and Innovation Agency (BRIN), Jakarta, Indonesia

    Arianto B. Santoso

  51. Eawag, Department of Surface Waters-Research and Management, Kastanienbaum, Switzerland

    Carsten J. Schubert

  52. Limnological Institute, Department of Biology, University of Konstanz, Konstanz, Germany

    Armando Sepulveda-Jauregui

  53. Reservoir Doctors, Canberra, Australia

    Bradford S. Sherman

  54. Environmental Science Department, Dickinson College, Carlisle, PA, 17013, USA

    Kristin E. D. Strock

  55. National Institute for Environmental Studies, Ibaraki, Japan

    Kenji Tsuchiya

  56. Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden

    Gesa A. Weyhenmeyer

Authors
  1. Joseph S. Rabaey
    View author publications

    Search author on:PubMed Google Scholar

  2. Abigail S. L. Lewis
    View author publications

    Search author on:PubMed Google Scholar

  3. Katrin Attermeyer
    View author publications

    Search author on:PubMed Google Scholar

  4. Patrick Aurich
    View author publications

    Search author on:PubMed Google Scholar

  5. Sheel Bansal
    View author publications

    Search author on:PubMed Google Scholar

  6. Maciej Bartosiewicz
    View author publications

    Search author on:PubMed Google Scholar

  7. Brittni L. Bertolet
    View author publications

    Search author on:PubMed Google Scholar

  8. Ingeborg Bussmann
    View author publications

    Search author on:PubMed Google Scholar

  9. Sarah B. Cadieux
    View author publications

    Search author on:PubMed Google Scholar

  10. Elisa Calamita
    View author publications

    Search author on:PubMed Google Scholar

  11. Camilla Capelli
    View author publications

    Search author on:PubMed Google Scholar

  12. Cayelan C. Carey
    View author publications

    Search author on:PubMed Google Scholar

  13. Carmen Cillero
    View author publications

    Search author on:PubMed Google Scholar

  14. Francois Clayer
    View author publications

    Search author on:PubMed Google Scholar

  15. Sofia L. D’Ambrosio
    View author publications

    Search author on:PubMed Google Scholar

  16. Thomas A. Davidson
    View author publications

    Search author on:PubMed Google Scholar

  17. Bridget R. Deemer
    View author publications

    Search author on:PubMed Google Scholar

  18. Blaize A. Denfeld
    View author publications

    Search author on:PubMed Google Scholar

  19. Werner Eckert
    View author publications

    Search author on:PubMed Google Scholar

  20. Chiara Esposito
    View author publications

    Search author on:PubMed Google Scholar

  21. Phillip Ford
    View author publications

    Search author on:PubMed Google Scholar

  22. Adrianna Gorsky
    View author publications

    Search author on:PubMed Google Scholar

  23. Natalie A. Griffiths
    View author publications

    Search author on:PubMed Google Scholar

  24. Hans-Peter F. Grossart
    View author publications

    Search author on:PubMed Google Scholar

  25. David P. Hamilton
    View author publications

    Search author on:PubMed Google Scholar

  26. Meredith A. Holgerson
    View author publications

    Search author on:PubMed Google Scholar

  27. Brian J. Huser
    View author publications

    Search author on:PubMed Google Scholar

  28. Tomoya Iwata
    View author publications

    Search author on:PubMed Google Scholar

  29. Joachim Jansen
    View author publications

    Search author on:PubMed Google Scholar

  30. Stuart E. Jones
    View author publications

    Search author on:PubMed Google Scholar

  31. Sari Juutinen
    View author publications

    Search author on:PubMed Google Scholar

  32. Pirkko Kortelainen
    View author publications

    Search author on:PubMed Google Scholar

  33. Matthias Koschorreck
    View author publications

    Search author on:PubMed Google Scholar

  34. Theis Kragh
    View author publications

    Search author on:PubMed Google Scholar

  35. Alo Laas
    View author publications

    Search author on:PubMed Google Scholar

  36. Tuula Larmola
    View author publications

    Search author on:PubMed Google Scholar

  37. Saskia Läubli
    View author publications

    Search author on:PubMed Google Scholar

  38. Isabelle Laurion
    View author publications

    Search author on:PubMed Google Scholar

  39. Moritz F. Lehmann
    View author publications

    Search author on:PubMed Google Scholar

  40. Liu Liu
    View author publications

    Search author on:PubMed Google Scholar

  41. Pertti J. Martikainen
    View author publications

    Search author on:PubMed Google Scholar

  42. Anna Matoušů
    View author publications

    Search author on:PubMed Google Scholar

  43. Stephen A. McCord
    View author publications

    Search author on:PubMed Google Scholar

  44. Jorge J. Montes-Pérez
    View author publications

    Search author on:PubMed Google Scholar

  45. Daniele Nizzoli
    View author publications

    Search author on:PubMed Google Scholar

  46. César Ordóñez
    View author publications

    Search author on:PubMed Google Scholar

  47. Mike Peacock
    View author publications

    Search author on:PubMed Google Scholar

  48. Rachel M. Pilla
    View author publications

    Search author on:PubMed Google Scholar

  49. Vilmantas Prėskienis
    View author publications

    Search author on:PubMed Google Scholar

  50. Junbing Pu
    View author publications

    Search author on:PubMed Google Scholar

  51. Tenna Riis
    View author publications

    Search author on:PubMed Google Scholar

  52. Taija Saarela
    View author publications

    Search author on:PubMed Google Scholar

  53. Arianto B. Santoso
    View author publications

    Search author on:PubMed Google Scholar

  54. Carsten J. Schubert
    View author publications

    Search author on:PubMed Google Scholar

  55. Armando Sepulveda-Jauregui
    View author publications

    Search author on:PubMed Google Scholar

  56. Bradford S. Sherman
    View author publications

    Search author on:PubMed Google Scholar

  57. Jonas S. Sø
    View author publications

    Search author on:PubMed Google Scholar

  58. Katherine J. Stenehjem
    View author publications

    Search author on:PubMed Google Scholar

  59. Kristin E. D. Strock
    View author publications

    Search author on:PubMed Google Scholar

  60. Kenji Tsuchiya
    View author publications

    Search author on:PubMed Google Scholar

  61. Katrin Wendt-Potthoff
    View author publications

    Search author on:PubMed Google Scholar

  62. Gesa A. Weyhenmeyer
    View author publications

    Search author on:PubMed Google Scholar

  63. Petr Znachor
    View author publications

    Search author on:PubMed Google Scholar

  64. Jakob Zopfi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.S.R. and A.S.L.L. organized the project, led data acquisition, compiled the data, and wrote the original draft of the manuscript. All authors were substantively involved in the following: (1) either providing data or extracting data from publications, (2) data quality checks and methods description, and (3) writing, reviewing and editing the manuscript. All authors approved the final version of this manuscript prior to submission.

Corresponding authors

Correspondence to Joseph S. Rabaey or Mike Peacock.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabaey, J.S., Lewis, A.S.L., Attermeyer, K. et al. Depth-resolved carbon dioxide and methane concentrations in 522 lakes, ponds, and reservoirs worldwide. Sci Data (2026). https://doi.org/10.1038/s41597-026-06751-0

Download citation

  • Received: 25 August 2025

  • Accepted: 27 January 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06751-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene