Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Data from long-term experiments in temperate croplands to evaluate soil organic carbon models
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 19 February 2026

Data from long-term experiments in temperate croplands to evaluate soil organic carbon models

  • Kenji Fujisaki  ORCID: orcid.org/0000-0001-5067-25671,
  • Fabien Ferchaud2,3,
  • Hugues Clivot4,
  • Elisa Bruni  ORCID: orcid.org/0000-0001-8074-05165,
  • Bertrand Guenet5,
  • Christian Pichot6,
  • Antoine Versini7,
  • François Baudin8,
  • Antonio Bispo1,
  • Philippe Peylin9,
  • Manuel P. Martin1,
  • Johannes L. Jensen10,
  • Jørgen Eriksen10,
  • Claire Chenu11,
  • Andrew S. Gregory  ORCID: orcid.org/0000-0001-7123-078412,
  • Margaret J. Glendining  ORCID: orcid.org/0000-0002-6466-462912,
  • Ines Merbach13,
  • Nicolas Beaudoin3,
  • Bruno Mary3,
  • Alain Mollier14,
  • Gilles Tison15,
  • Christophe Montagnier11,
  • Abad Chabbi11,16,
  • Françoise Vertès17,
  • Alice Cadéro18,
  • Anne-Isabelle Graux18,
  • Sylvain Pellerin14,
  • Florent Levavasseur11,
  • Manon Gilles19,
  • Thierry Morvan17,
  • Camille Resseguier11,
  • Luis Milesi20,
  • Alicia Irizar20,
  • Adriàn Andriulo20,
  • Marie-Noël Mistou21,
  • Arnaud Butier21,
  • Michel Bertrand21,
  • Bénédicte Autret22,
  • Marie-Hélène Jeuffroy21,
  • Gilles Grandeau21,
  • Thierry Doré21,
  • Vincent Cellier  ORCID: orcid.org/0009-0007-5182-223023,
  • Alain Berthier23,
  • Sébastien Darras24,
  • Guillaume Audebert16,
  • Ludovic Pasquier16,
  • Fabien Ecalle16,
  • Antoine Savoie25,
  • Marcus Schiedung  ORCID: orcid.org/0000-0002-0185-986726,
  • Christopher Poeplau26,
  • Nadia I. Maaroufi  ORCID: orcid.org/0000-0002-8028-140927,
  • Thomas Kätterer28,
  • Martin A. Bolinder28,
  • Jonathan Sanderman29 &
  • …
  • Pierre Barré5 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon cycle

Abstract

Soil organic carbon (SOC) models need independent evaluation against field measurements, but those latter are rarely publicly available and harmonized. In this study, we collected and shared data from 167 agronomic treatments in 34 agronomic long-term experiments (LTEs) located in temperate croplands, allowing the evaluation of several soil organic C models such as RothC, Century, AMG, MIMICS, ICBM, Millenial, and CTOOL. The dataset includes climate data, soil properties, C inputs from crops (n = 4588 records) and organic amendments, irrigation data, monthly soil cover, as well as SOC stock measurements in the topsoil layer (n = 1328 records). Climate, soil moisture, and soil temperature data were extracted from daily climate databases. Carbon inputs from crops were calculated from observed yields and harvest index, with some harvest index values estimated, combined with crop allometric coefficients from the literature. Descriptions of LTE, agronomic treatments, methodological metadata, and a part of the code, accompanies the dataset. The dataset can be reused to evaluate single SOC models, or to evaluate an ensemble of models.

Data availability

The dataset is accessible from a ZIP archive deposited on Recherche Data Gouv59: https://doi.org/10.57745/WKQHW2.

Code availability

Several R scripts are provided in the code folder of the dataset. Scripts for climate data extraction, aggregation and formatting from SAFRAN (get_safran_data_geosas_api.R), ERA5 & ERA5-Land (get_ERA5_data_openmeteo.R), Rothamsted dataset (climate_data_broadbalk.R) are provided and can be used to reproduce the climate tables, and soil moisture and temperature tables. The final tables are generated with merge_climate_data.R.

The calculation of C inputs from observed data (yields and HI) can be found in the c_input_calculation.R file. The dataset_check.R script reproduces the checking of the dataset. Description of the dataset including code for the figures used in this paper is found in the dataset_desc.Rmd file. The R version used was 4.5.1. The R environment used in this work was encapsulated with the renv package, ensuring code reproducibility within a Rstudio project. This R environment can be restored by running the setup.R script.

References

  1. Le Noë, J. et al. Soil organic carbon models need independent time-series validation for reliable prediction. Commun Earth Environ 4, 1–8, https://doi.org/10.1038/s43247-023-00830-5 (2023).

    Google Scholar 

  2. Blanchy, G. et al. An open-source metadataset of running European mid- and long-term agricultural field experiments. Soil Use and Management 40, e12978, https://doi.org/10.1111/sum.12978 (2024).

    Google Scholar 

  3. Jandl, R. et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment 468, 376–383, http://www.sciencedirect.com/science/article/pii/S0048969713009406 (2014).

    Google Scholar 

  4. Coleman, K. & Jenkinson, D. S. RothC-26.3 - A Model for the turnover of carbon in soil. in Evaluation of Soil Organic Matter Models (eds Powlson, D. S., Smith, P. & Smith, J. U.) 237–246. http://link.springer.com/chapter/10.1007/978-3-642-61094-3_17 (Springer Berlin Heidelberg, 1996).

  5. Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131, https://doi.org/10.1007/BF02180320 (1988).

    Google Scholar 

  6. Andriulo, A., Mary, B. & Guerif, J. Modelling soil carbon dynamics with various cropping. Agronomie 19, 365–377 (1999).

    Google Scholar 

  7. Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G. & Bonan, G. B. Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geoscientific Model Development 8, 1789–1808, https://doi.org/10.5194/gmd-8-1789-2015 (2015).

    Google Scholar 

  8. Andrén, O. & Kätterer, T. ICBM: The Introductory Carbon Balance Model for Exploration of Soil Carbon Balances. Ecological Applications 7, 1226–1236, https://doi.org/10.2307/2641210 (1997).

    Google Scholar 

  9. Abramoff, R. et al. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137, 51–71, https://doi.org/10.1007/s10533-017-0409-7 (2018).

    Google Scholar 

  10. Giannini-Kurina, F. et al. Modelling and validating soil carbon dynamics at the long-term plot scale using the rCTOOL R package. Environmental Modelling & Software 183, 106229, https://doi.org/10.1016/j.envsoft.2024.106229 (2025).

    Google Scholar 

  11. Graux, A.-I., Cadero, A., Ferchaud, F. & Vertès, F. Kerbernez: a long-term experiment to study the effect of different forage cropping systems on crop yields and soil organic matter in a temperate oceanic climate. Recherche Data Gouv https://doi.org/10.57745/P8NNZK (2024).

  12. Morvan, T., Le Roy, P. & Gaillard, F. A dataset of crop yields and exports of C, N, P, K, and Mg over 9 years at the EFELE long-term field-experiment site. Recherche Data Gouv https://doi.org/10.57745/MZ79D8 (2025).

  13. Michaud, A., Montenach, D., Levavasseur, F. & Houot, S. PROspective - agronomic management dataset. Recherche Data Gouv https://doi.org/10.57745/77AFBH (2023).

  14. Michaud, A., Montenach, D., Levavasseur, F. & Houot, S. PROspective - organic waste products physicochemical dataset. Recherche Data Gouv https://doi.org/10.57745/6GCPX6 (2023).

  15. Michaud, A., Montenach, D., Levavasseur, F. & Houot, S. PROspective - plant physicochemical dataset. Recherche Data Gouv https://doi.org/10.57745/BPB34G (2023).

  16. Montenach, D., Michaud, A., Levavasseur, F. & Houot, S. PROspective - soil physicochemical dataset. Recherche Data Gouv https://doi.org/10.57745/IOSBW6 (2023).

  17. Colnenne-David, C. Innovative cropping systems designed to reach both environmental and production targets: data set of biotic and abiotic variables from a twelve-year French field trial. Recherche Data Gouv https://doi.org/10.57745/5TJJZA (2024).

  18. Poulton, P., Gregory, A., Glendining, M. & Ostler, R. Highfield Bare Fallow soil chemical properties, 1959-2023. Electronic Rothamsted Archive, Rothamsted Research https://doi.org/10.23637/rrs1-SOILCN-2 (2025).

  19. Rothamsted Research. Broadbalk Wheat annual grain and straw yields 1852-1925. Electronic Rothamsted Archive, Rothamsted Research https://doi.org/10.23637/rbk1-1796346264-1 (2021).

  20. Glendining, M. & Poulton, P. Broadbalk Wheat annual grain and straw yields 1926-1967. Electronic Rothamsted Archive, Rothamsted Research https://doi.org/10.23637/rbk1-yld2667-01 (2023).

  21. Glendining, M. & Poulton, P. Broadbalk Wheat annual grain and straw yields 1968-2022. Electronic Rothamsted Archive, Rothamsted Research https://doi.org/10.23637/rbk1-yld6822-01 (2023).

  22. Rothamsted Research. Broadbalk soil organic carbon content 1843-2010. Electronic Rothamsted Archive, Rothamsted Research https://doi.org/10.23637/KeyRefOABKsoc (2014).

    Google Scholar 

  23. Glendining, M., Gregory, A., Poulton, P. & Wilmer, W. Broadbalk Wheat Experiment organic manure chemical composition. Electronic Rothamsted Archive, Rothamsted Research https://doi.org/10.23637/rbk1-FYM-01 (2024).

    Google Scholar 

  24. Swedish University of Agricultural Sciences. SLU long-term field experiments: The frame trial (R3-RAM56), crop and soil data from 1956 and onwards (Version 1) [Data set]. Swedish University of Agricultural Sciences https://doi.org/10.5878/7f5n-vp94 (2025).

  25. Swedish University of Agricultural Sciences. SLU long-term field experiments: Soil organic matter in a cereal-only cropping system (R3-0020), crop and soil data from 1971 and onwards (Version 1) [Data set]. Swedish University of Agricultural Sciences https://doi.org/10.5878/09pa-x212 (2025).

  26. Jin, V. Long-term tillage and cropping system experiment for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Nutrient Use and Outcome Network in Lincoln, Nebraska. U.S. Department of Agriculture - Agricultural Research Service https://doi.org/10.15482/USDA.ADC/1503991 (2020).

  27. Sanderman, J., David, R., Moore, A., Keith, H. & Farquharson, R. Waite Permanent Rotation Trial. CSIRO https://doi.org/10.4225/08/55E5165EC0D29 (2015).

  28. Robertson, G., Haddad, N. & Snapp, S. Agronomic Yields in Row Crop Agriculture at the Kellogg Biological Station, Hickory Corners, MI (1989 to 2021). Environmental Data Initiative https://doi.org/10.6073/PASTA/88B4C974BDC9183F784F3A91B01086C6 (2022).

  29. Robertson, G. & Simmons, J. Main Cropping System Experiment Field Logs and treatment descriptions at the Kellogg Biological Station, Hickory Corners, MI (1988 to 2020). Environmental Data Initiative https://doi.org/10.6073/PASTA/E5642426F9200404B6BA3AF45AD9C423 (2020).

  30. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. & others. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300, D05109 (1998).

    Google Scholar 

  31. Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M. & Soubeyroux, J.-M. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology 30, 1627–1644, https://doi.org/10.1002/joc.2003 (2010).

    Google Scholar 

  32. Hersbach, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049, https://doi.org/10.1002/qj.3803 (2020).

    Google Scholar 

  33. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021 (2021).

    Google Scholar 

  34. Zippenfenig, P. Open-Meteo.com Weather API. Zenodo https://doi.org/10.5281/zenodo.7973572 (2024).

  35. Pisel, T. openmeteo: Retrieve Weather Data from the Open-Meteo API. (2023).

  36. Zotarelli, L., Dukes, M., Romero, C., Migliaccio, K. & Morgan, K. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). EDIS AE459, https://doi.org/10.32473/edis-ae459-2010 (2010).

  37. Ellert, B. H. & Bettany, J. R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science 75, 529–538, http://pubs.aic.ca/doi/abs/10.4141/cjss95-075 (1995).

    Google Scholar 

  38. Ferchaud, F., Chlebowski, F. & Mary, B. SimpleESM: R Script to Calculate Soil Organic Carbon and Nitrogen Stocks at Equivalent Soil Mass. https://hal.science/hal-04013158 (2023).

  39. Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C. & Sebag, D. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Organic Geochemistry 34, 327–343, https://doi.org/10.1016/S0146-6380(02)00239-5 (2003).

    Google Scholar 

  40. Kpemoua, T. P. I. et al. What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation. SOIL 10, 533–549, https://doi.org/10.5194/soil-10-533-2024 (2024).

    Google Scholar 

  41. Cécillon, L. et al. Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU). Geoscientific Model Development 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021 (2021).

    Google Scholar 

  42. Begill, N., Don, A. & Poeplau, C. No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils. Global Change Biology 29, 4662–4669, https://doi.org/10.1111/gcb.16804 (2023).

    Google Scholar 

  43. Just, C. et al. A Simple Approach to Isolate Slow and Fast Cycling Organic Carbon Fractions in Central European Soils—Importance of Dispersion Method. Front. Soil Sci. 1, https://doi.org/10.3389/fsoil.2021.692583 (2021).

  44. Lutfalla, S. et al. Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale. Biogeosciences 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019 (2019).

    Google Scholar 

  45. Román Dobarco, M., Cousin, I., Le Bas, C. & Martin, M. P. Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma 336, 81–95, https://doi.org/10.1016/j.geoderma.2018.08.022 (2019).

    Google Scholar 

  46. Chen, H. et al. An 18-year field experiment to assess how various types of organic waste used at European regulatory rates sustain crop yields and C, N, P, and K dynamics in a French calcareous soil. Soil and Tillage Research 221, 105415, https://doi.org/10.1016/j.still.2022.105415 (2022).

    Google Scholar 

  47. Clivot, H. et al. Modeling soil organic carbon evolution in long-term arable experiments with AMG model. Environmental Modelling & Software 118, 99–113, https://doi.org/10.1016/j.envsoft.2019.04.004 (2019).

    Google Scholar 

  48. Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A. & VandenBygaart, A. J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems & Environment 118, 29–42, https://doi.org/10.1016/j.agee.2006.05.013 (2007).

    Google Scholar 

  49. Clivot, H. et al. AMGv2 parameters. Recherche Data Gouv https://doi.org/10.57745/MEQQIX (2023).

  50. Fan, J., McConkey, B., Wang, H. & Janzen, H. Root distribution by depth for temperate agricultural crops. Field Crops Research 189, 68–74, https://doi.org/10.1016/j.fcr.2016.02.013 (2016).

    Google Scholar 

  51. Gale, M. R. & Grigal, D. F. Vertical root distributions of northern tree species in relation to successional status. Can. J. For. Res. 17, 829–834, https://doi.org/10.1139/x87-131 (1987).

    Google Scholar 

  52. Thiébeau, P., Jensen, L. S., Ferchaud, F. & Recous, S. Dataset of biomass and chemical quality of crop residues from European areas. Data in Brief 37, 107227, https://doi.org/10.1016/j.dib.2021.107227 (2021).

    Google Scholar 

  53. Caracciolo, C. et al. The AGROVOC Linked Dataset. Semantic Web 4, 341–348, https://doi.org/10.3233/SW-130106 (2013).

    Google Scholar 

  54. Levavasseur, F. et al. Carbon and nitrogen mineralization data of various exogenous organic matter (EOM) under controlled conditions. Recherche Data Gouv https://doi.org/10.57745/JGHVYV (2025).

  55. Levavasseur, F. & Houot, S. Predicting the short- and long-term effects of recycling organic wastes in cropping systems with the PROLEG tool. Soil Use and Management 39, 535–556, https://doi.org/10.1111/sum.12856 (2023).

    Google Scholar 

  56. Donmez, C. et al. Provision of metadata of European agricultural long-term experiments through BonaRes and EJP SOIL collaboration. Data in Brief 42, 108226, https://doi.org/10.1016/j.dib.2022.108226 (2022).

    Google Scholar 

  57. Haddaway, N. R. et al. How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence 6, https://doi.org/10.1186/s13750-017-0108-9 (2017).

  58. Fujisaki, K. et al. Semantics about soil organic carbon storage: DATA4C+, a comprehensive thesaurus and classification of management practices in agriculture and forestry. SOIL 9, 89–100, https://doi.org/10.5194/soil-9-89-2023 (2023).

    Google Scholar 

  59. Fujisaki, K. et al. Dataset from long-term experiments in temperate croplands to evaluate soil organic carbon models. Recherche Data Gouv https://doi.org/10.57745/WKQHW2 (2026).

  60. Martin, M. P. et al. Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France. Global Change Biology 27, 2458–2477, https://doi.org/10.1111/gcb.15547 (2021).

    Google Scholar 

  61. Riggers, C., Poeplau, C., Don, A., Frühauf, C. & Dechow, R. How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change? Plant Soil 460, 417–433, https://doi.org/10.1007/s11104-020-04806-8 (2021).

    Google Scholar 

  62. Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H. & Menichetti, L. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment 141, 184–192, https://doi.org/10.1016/j.agee.2011.02.029 (2011).

    Google Scholar 

  63. Taghizadeh-Toosi, A. et al. Visiting dark sides of model simulation of carbon stocks in European temperate agricultural soils: allometric function and model initialization. Plant Soil 450, 255–272, https://doi.org/10.1007/s11104-020-04500-9 (2020).

    Google Scholar 

  64. Hirte, J., Leifeld, J., Abiven, S., Oberholzer, H.-R. & Mayer, J. Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity. Agriculture, Ecosystems & Environment 265, 556–566, https://doi.org/10.1016/j.agee.2018.07.010 (2018).

    Google Scholar 

  65. Kabała, C., Musztyfaga, E., Gałka, B., Łabuńska, D. & Mańczyńska, P. Conversion of Soil pH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: Conclusions for Soil Management, Environmental Monitoring, and International Soil Databases. Pol. J. Environ. Stud. 25, 647–653, https://doi.org/10.15244/pjoes/61549 (2016).

    Google Scholar 

  66. Bruni, E. et al. Multi-modelling predictions show high uncertainty of required carbon input changes to reach a 4‰ target. European Journal of Soil Science 73, e13330, https://doi.org/10.1111/ejss.13330 (2022).

    Google Scholar 

  67. Sierra, C. A., Müller, M. & Trumbore, S. E. Models of soil organic matter decomposition: the SoilR package, version 1.0. Geosci. Model Dev. 5, 1045–1060, https://doi.org/10.5194/gmd-5-1045-2012 (2012).

    Google Scholar 

  68. Pichot, C. et al. Semantic Management of Data from Biodiversity and Ecosystem Studies: Toward an Integrated Workflow from Collection to Publication. Application to Plankton Data from Lake Geneva. in JOWO. https://ceur-ws.org/Vol-2969/paper11-s4biodiv.pdf (2021).

  69. Madin, J. et al. An ontology for describing and synthesizing ecological observation data. Ecological Informatics 2, 279–296, https://doi.org/10.1016/j.ecoinf.2007.05.004 (2007).

    Google Scholar 

  70. Colomb, B., Debaeke, P., Jouany, C. & Nolot, J. M. Phosphorus management in low input stockless cropping systems: Crop and soil responses to contrasting P regimes in a 36-year experiment in southern France. European Journal of Agronomy 26, 154–165, https://doi.org/10.1016/j.eja.2006.09.004 (2007).

    Google Scholar 

  71. Soyer, J. P., Lubet, E., Menet, M. & Chignon, R. Entretien de la fertilité phosphopotassique du sol en culture céréalière à rotation simple (monoculture maïs ou rotation blé/maïs). C.R. Acad. Agric. France 843–857 (1976).

  72. Morel, C., Plénet, D. & Mollier, A. Calibration of maize phosphorus status by plant-available soil P assessed by common and process-based approaches. Is it soil-specific or not? European Journal of Agronomy 122, 126174, https://doi.org/10.1016/j.eja.2020.126174 (2021).

    Google Scholar 

  73. Graux, A.-I., Cadéro, A., Ferchaud, F. & Vertès, F. The Kerbernez long-term experiment: A dataset on crop yield and soil organic matter evolution in forage crop rotations and permanent grasslands in a temperate oceanic climate. Data in Brief 58, 111259, https://doi.org/10.1016/j.dib.2024.111259 (2025).

    Google Scholar 

  74. Morel, C., Jouany, C., Denoroy, P. & Montagnier, C. Functional and mechanistic assessment of plant-available soil phosphorus greatly improved the multisite diagnosis of maize yield response. Field Crops Research 317, 109539, https://doi.org/10.1016/j.fcr.2024.109539 (2024).

    Google Scholar 

  75. Levavasseur, F. et al. The simple AMG model accurately simulates organic carbon storage in soils after repeated application of exogenous organic matter. Nutr Cycl Agroecosyst 117, 215–229, https://doi.org/10.1007/s10705-020-10065-x (2020).

    Google Scholar 

  76. Morvan, T. et al. A comprehensive dataset on nitrate, Nitrite and dissolved organic carbon leaching losses from a 4-year Lysimeter study. Data in Brief 32, 106029, https://doi.org/10.1016/j.dib.2020.106029 (2020).

    Google Scholar 

  77. Lamichhane, J. R., Boizard, H., Dürr, C., Richard, G. & Boiffin, J. Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment. Data in Brief 39, 107581, https://doi.org/10.1016/j.dib.2021.107581 (2021).

    Google Scholar 

  78. Autret, B. et al. Alternative arable cropping systems: A key to increase soil organic carbon storage? Results from a 16 year field experiment. Agriculture, Ecosystems & Environment 232, 150–164, https://doi.org/10.1016/j.agee.2016.07.008 (2016).

    Google Scholar 

  79. Colnenne-David, C., Jeuffroy, M.-H., Grandeau, G., Ferchaud, F. & Doré, T. Innovative cropping systems designed to reach both environmental and production targets: Data set of biotic and abiotic variables from a twelve-year French field trial. Data in Brief 54, 110398, https://doi.org/10.1016/j.dib.2024.110398 (2024).

    Google Scholar 

  80. Saffih-Hdadi, K. & Mary, B. Modeling consequences of straw residues export on soil organic carbon. Soil Biology and Biochemistry 40, 594–607, https://doi.org/10.1016/j.soilbio.2007.08.022 (2008).

    Google Scholar 

  81. Ferchaud, F., Vitte, G. & Mary, B. Changes in soil carbon stocks under perennial and annual bioenergy crops. GCB Bioenergy 8, 290–306, https://doi.org/10.1111/gcbb.12249 (2016).

    Google Scholar 

  82. Cellier, V. et al. Analysis of the socio-economic and environmental sustainability of a network of zero-pesticide cropping systems (Rés0Pest) after 10 years of experimentation. Innovations Agronomiques 98, 142, https://doi.org/10.17180/ciag-2025-Vol98-art11-GB (2025).

    Google Scholar 

  83. Barré, P. et al. Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments. Biogeosciences 7, 3839–3850, https://doi.org/10.5194/bg-7-3839-2010 (2010).

    Google Scholar 

  84. Schlüter, S. et al. Divergence in physical, chemical, and biological soil properties caused by different long-term bare fallow management and natural succession. Geoderma 459, 117361, https://doi.org/10.1016/j.geoderma.2025.117361 (2025).

    Google Scholar 

  85. Yin, X. et al. Long-term modelling of soil N mineralization and N fate using STICS in a 34-year crop rotation experiment. Geoderma 357, 113956, https://doi.org/10.1016/j.geoderma.2019.113956 (2020).

    Google Scholar 

  86. Pold, G., MacDonald, E., Braun, S. & Herrmann, A. M. Soil and vegetation property data from the Ultuna R3-RAM56 long-term soil amendment experiment, 1956–2023. Data in Brief 59, 111350, https://doi.org/10.1016/j.dib.2025.111350 (2025).

    Google Scholar 

  87. Börjesson, G., Bolinder, M. A., Kirchmann, H. & Kätterer, T. Organic carbon stocks in topsoil and subsoil in long-term ley and cereal monoculture rotations. Biol Fertil Soils 54, 549–558, https://doi.org/10.1007/s00374-018-1281-x (2018).

    Google Scholar 

  88. Poulton, P. R. et al. The Broadbalk Wheat Experiment, Rothamsted, UK: Crop yields and soil changes during the last 50 years. Advances in Agronomy 173–298 https://doi.org/10.1016/bs.agron.2023.11.003 (2024).

  89. Varvel, G. E. & Wilhelm, W. W. No-tillage increases soil profile carbon and nitrogen under long-term rainfed cropping systems. Soil and Tillage Research 114, 28–36, https://doi.org/10.1016/j.still.2011.03.005 (2011).

    Google Scholar 

  90. Grace, P., Oades, J., Keith, H. & Hancock, T. Trends in wheat yields and soil organic carbon in the Permanent Rotation Trial at the Waite Agricultural Research Institute, South Australia. Aust. J. Exp. Agric. 35, 857, https://doi.org/10.1071/EA9950857 (1995).

    Google Scholar 

  91. Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N. & Robertson, G. P. Agricultural Management and Soil Carbon Storage in Surface vs. Deep Layers. Soil Science Society of America Journal 75, 92, https://doi.org/10.2136/sssaj2009.0414 (2011).

    Google Scholar 

Download references

Acknowledgements

This work is part of project ALAMOD of the exploratory research program FairCarboN and received government funding managed by the Agence Nationale de la Recherche under the France 2030 program, reference ANR-22-PEXF-0002. We thank the IMMORTAL project, funded by a joint CNRS/INRAE call for proposals « Cycle du carbone dans les écosystèmes terrestres ». We thank Rothamsted Research for information and data from the e-RA database. The Rothamsted Long-Term Experiments - National Bioscience Research Infrastructure (RLTE-NBRI) is funded by the UK Research and Innovation - Biotechnology and Biological Sciences Research Council (UKRI-BBSRC) under award BBS/E/RH/23NB0007 (2023-2028). The RLTE-NBRI is also supported by the Lawes Agricultural Trust. Support for this research was also provided by the USDA Long-Term Agroecosystem Research (LTAR) Program and the NSF Long-Term Ecological Research Program (DEB 2224712) at the Kellogg Biological Station, and by Michigan State University AgBioResearch. We also thank the Swedish University of Agricultural Sciences for supporting the maintenance of the Swedish LTEs including the associated database and soil sample archive. USDA-ARS Material Transfer Agreement #18655. USDA is an equal opportunity provider and employer. Mention of trade names or commercial products in this publication does not imply recommendation or endorsement by the U.S. Department of Agriculture. The QualiAgro, PROspective and EFELE experiments are part of the SOERE-PRO (network of long-term experiments dedicated to the study of the impact of the recycling of organic waste products) and are integrated as a service of the “Investment in the Future” infrastructure AnaEE-France, overseen by the French National Research Agency (ANR-11-INBS-0001). The QualiAgro experiment was founded and is still supported by INRAE and Veolia. The PROspective experiment was founded and is still supported by INRAE and SMRA68. The La Cage and the 42 plots experiments at Versailles were created and are supported by INRAE.The Lusignan experiment is part of the SOERE-ACBB (French national observatory on Agroecosystems, Biogeochemical Cycles and Biodiversity) and is integrated as a service of the “Investment in the Future” infrastructure AnaEE-France, overseen by the French National Research Agency (ANR-11-INBS-0001). It was founded and is still supported by INRAE. Rés0Pest is an experimental network of zero-pesticide farming systems for field crops and mixed farming, comprising nine sites and which aims to generate knowledge that can be used to design innovative, pesticide-efficient farming systems. We acknowledge Hubert Boizard, Pascal Cocandeau, Caroline Colnenne-David, Marie-Laure Decau, Pascal Deneroy, Christophe Desvignes, Rosemonde Devaux, Jérôme Guérif, Claire Jouany, Dominique Le Floch, Emilie Mignot, Christian Morel, Brice Mosa, Bernard Nicolardot, Bernard Nicoullaud, Daniel Plenet, Guy Richard, Véronique Tanneau, and Eric Venet, for their contribution to site management and/or data collection in the LTE of the dataset. We thank Andy Geschwendtas and Mingming Zong for support of the SOC fractionation.

Author information

Authors and Affiliations

  1. INRAE, Info&Sols, 45075, Orléans, France

    Kenji Fujisaki, Antonio Bispo & Manuel P. Martin

  2. UMR Eco&Sols, Univ Montpellier, CIRAD, INRAE, IRD, Institut Agro, Montpellier, France

    Fabien Ferchaud

  3. BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, 02000, Barenton-Bugny, France

    Fabien Ferchaud, Nicolas Beaudoin & Bruno Mary

  4. Université de Reims Champagne-Ardenne, INRAE, FARE, Reims, France

    Hugues Clivot

  5. Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL Université, IPSL, Paris, France

    Elisa Bruni, Bertrand Guenet & Pierre Barré

  6. INRAE, URFM, Avignon, 84000, France

    Christian Pichot

  7. CIRAD, UPR Recyclage et risque, 34000, Montpellier, France

    Antoine Versini

  8. Sorbonne Université, CNRS, ISTeP, 75005, Paris, France

    François Baudin

  9. Laboratoire des sciences du climat et de l’environnement (LSCE), IPSL, CEA/CNRS/UVSQ, Gif-sur-Yvette, France

    Philippe Peylin

  10. Department of Agroecology, Aarhus University, Blichers Allé 20, Tjele, 8830, Denmark

    Johannes L. Jensen & Jørgen Eriksen

  11. Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France

    Claire Chenu, Christophe Montagnier, Abad Chabbi, Florent Levavasseur & Camille Resseguier

  12. Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom

    Andrew S. Gregory & Margaret J. Glendining

  13. Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, D-06120, Halle, Germany

    Ines Merbach

  14. INRAE, Bordeaux Sciences Agro, UMR ISPA, 33140, Villenave d’Ornon, France

    Alain Mollier & Sylvain Pellerin

  15. INRAE, UE APC, Castanet-Tolosan, France

    Gilles Tison

  16. Unité de Recherche Pluridisciplinaire Prairies et Plantes Fourragères, INRAE - Centre de Recherche Nouvelle- Aquitaine-Poitiers, Lusignan, France

    Abad Chabbi, Guillaume Audebert, Ludovic Pasquier & Fabien Ecalle

  17. INRAE, Institut Agro, UMR SAS, 35000, Rennes, France

    Françoise Vertès & Thierry Morvan

  18. INRAE, Institut Agro, UMR PEGASE, 35590, Saint-Gilles, France

    Alice Cadéro & Anne-Isabelle Graux

  19. INRAE, UEAV, 68000, Colmar, France

    Manon Gilles

  20. INTA, Pergamino, Buenos Aires, Argentina

    Luis Milesi, Alicia Irizar & Adriàn Andriulo

  21. Université Paris-Saclay, INRAE, AgroParisTech, UMR Agronomie, 91120, Palaiseau, France

    Marie-Noël Mistou, Arnaud Butier, Michel Bertrand, Marie-Hélène Jeuffroy, Gilles Grandeau & Thierry Doré

  22. INRAE, Unité AgroSystèmes TErritoires Ressources (ASTER), 88500, Mirecourt, France

    Bénédicte Autret

  23. INRAE, U2E, 21110, Bretenière, France

    Vincent Cellier & Alain Berthier

  24. INRAE, GCIE, 80200, Estrées-Mons, France

    Sébastien Darras

  25. INRAE, 11297 UE PAO, 37380, Nouzilly, France

    Antoine Savoie

  26. Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

    Marcus Schiedung & Christopher Poeplau

  27. Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden

    Nadia I. Maaroufi

  28. Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden

    Thomas Kätterer & Martin A. Bolinder

  29. Woodwell Climate Research Center, Falmouth, Massachusetts, USA

    Jonathan Sanderman

Authors
  1. Kenji Fujisaki
    View author publications

    Search author on:PubMed Google Scholar

  2. Fabien Ferchaud
    View author publications

    Search author on:PubMed Google Scholar

  3. Hugues Clivot
    View author publications

    Search author on:PubMed Google Scholar

  4. Elisa Bruni
    View author publications

    Search author on:PubMed Google Scholar

  5. Bertrand Guenet
    View author publications

    Search author on:PubMed Google Scholar

  6. Christian Pichot
    View author publications

    Search author on:PubMed Google Scholar

  7. Antoine Versini
    View author publications

    Search author on:PubMed Google Scholar

  8. François Baudin
    View author publications

    Search author on:PubMed Google Scholar

  9. Antonio Bispo
    View author publications

    Search author on:PubMed Google Scholar

  10. Philippe Peylin
    View author publications

    Search author on:PubMed Google Scholar

  11. Manuel P. Martin
    View author publications

    Search author on:PubMed Google Scholar

  12. Johannes L. Jensen
    View author publications

    Search author on:PubMed Google Scholar

  13. Jørgen Eriksen
    View author publications

    Search author on:PubMed Google Scholar

  14. Claire Chenu
    View author publications

    Search author on:PubMed Google Scholar

  15. Andrew S. Gregory
    View author publications

    Search author on:PubMed Google Scholar

  16. Margaret J. Glendining
    View author publications

    Search author on:PubMed Google Scholar

  17. Ines Merbach
    View author publications

    Search author on:PubMed Google Scholar

  18. Nicolas Beaudoin
    View author publications

    Search author on:PubMed Google Scholar

  19. Bruno Mary
    View author publications

    Search author on:PubMed Google Scholar

  20. Alain Mollier
    View author publications

    Search author on:PubMed Google Scholar

  21. Gilles Tison
    View author publications

    Search author on:PubMed Google Scholar

  22. Christophe Montagnier
    View author publications

    Search author on:PubMed Google Scholar

  23. Abad Chabbi
    View author publications

    Search author on:PubMed Google Scholar

  24. Françoise Vertès
    View author publications

    Search author on:PubMed Google Scholar

  25. Alice Cadéro
    View author publications

    Search author on:PubMed Google Scholar

  26. Anne-Isabelle Graux
    View author publications

    Search author on:PubMed Google Scholar

  27. Sylvain Pellerin
    View author publications

    Search author on:PubMed Google Scholar

  28. Florent Levavasseur
    View author publications

    Search author on:PubMed Google Scholar

  29. Manon Gilles
    View author publications

    Search author on:PubMed Google Scholar

  30. Thierry Morvan
    View author publications

    Search author on:PubMed Google Scholar

  31. Camille Resseguier
    View author publications

    Search author on:PubMed Google Scholar

  32. Luis Milesi
    View author publications

    Search author on:PubMed Google Scholar

  33. Alicia Irizar
    View author publications

    Search author on:PubMed Google Scholar

  34. Adriàn Andriulo
    View author publications

    Search author on:PubMed Google Scholar

  35. Marie-Noël Mistou
    View author publications

    Search author on:PubMed Google Scholar

  36. Arnaud Butier
    View author publications

    Search author on:PubMed Google Scholar

  37. Michel Bertrand
    View author publications

    Search author on:PubMed Google Scholar

  38. Bénédicte Autret
    View author publications

    Search author on:PubMed Google Scholar

  39. Marie-Hélène Jeuffroy
    View author publications

    Search author on:PubMed Google Scholar

  40. Gilles Grandeau
    View author publications

    Search author on:PubMed Google Scholar

  41. Thierry Doré
    View author publications

    Search author on:PubMed Google Scholar

  42. Vincent Cellier
    View author publications

    Search author on:PubMed Google Scholar

  43. Alain Berthier
    View author publications

    Search author on:PubMed Google Scholar

  44. Sébastien Darras
    View author publications

    Search author on:PubMed Google Scholar

  45. Guillaume Audebert
    View author publications

    Search author on:PubMed Google Scholar

  46. Ludovic Pasquier
    View author publications

    Search author on:PubMed Google Scholar

  47. Fabien Ecalle
    View author publications

    Search author on:PubMed Google Scholar

  48. Antoine Savoie
    View author publications

    Search author on:PubMed Google Scholar

  49. Marcus Schiedung
    View author publications

    Search author on:PubMed Google Scholar

  50. Christopher Poeplau
    View author publications

    Search author on:PubMed Google Scholar

  51. Nadia I. Maaroufi
    View author publications

    Search author on:PubMed Google Scholar

  52. Thomas Kätterer
    View author publications

    Search author on:PubMed Google Scholar

  53. Martin A. Bolinder
    View author publications

    Search author on:PubMed Google Scholar

  54. Jonathan Sanderman
    View author publications

    Search author on:PubMed Google Scholar

  55. Pierre Barré
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Kenji Fujisaki – project conception, data processing, data validation, data analysis, original draft writing. Fabien Ferchaud – project conception, data processing, data validation, data acquisition. Hugues Clivot – project conception, data processing, data validation. Elisa Bruni – project conception, data validation. Bertrand Guenet - project conception, data validation. Christian Pichot – project conception, data validation. Antoine Versini – project conception. François Baudin – data collection, data processing. Antonio Bispo – project conception, data validation. Manuel P. Martin – project conception, data validation. Johannes L. Jensen – site management, data acquisition. Jørgen Eriksen – site management, data acquisition. Claire Chenu – site management, data acquisition. Andrew S. Gregory – site management, data acquisition. Margaret J. Glendining – data acquisition, data processing. Ines Merbach – site management, data acquisition. Nicolas Beaudoin – site management, data acquisition. Bruno Mary – site management, data acquisition, data processing. Alain Mollier – site management, data acquisition. Gilles Tison – site management, data acquisition. Christophe Montagnier – site management, data acquisition. Abad Chabbi – site management, data acquisition. Françoise Vertes – site management, data acquisition. Alice Cadéro – data processing. Anne-Isabelle Graux – data processing. Sylvain Pellerin – site management, data acquisition. Florent Levavasseur – site management, data acquisition, data processing. Manon Gilles – site management, data acquisition. Thierry Morvan – site management, data acquisition. Camille Resseguier – site management, data acquisition. Luis Milesi – site management, data acquisition. Alicia Irizar – site management, data acquisition. Adriàn Andriulo – site management, data acquisition. Marie-Noël Mistou – site management, data acquisition. Arnaud Butier – site management, data acquisition. Michel Bertrand – site management, data acquisition. Bénédicte Autret – data acquisition, data processing. Marie-Hélène Jeuffroy – site management, data acquisition. Gilles Grandeau – site management, data acquisition. Thierry Doré – site management, data acquisition. Vincent Cellier – site management, data acquisition, data processing. Alain Berthier – site management, data acquisition. Sébastien Darras – site management, data acquisition. Guillaume Audebert – site management, data acquisition. Ludovic Pasquier – site management, data acquisition. Fabien Ecalle – site management, data acquisition. Antoine Savoie – site management, data acquisition. Marcus Schiedung – data acquisition, data validation. Christopher Poeplau – data acquisition. Nadia I. Maaroufi – site management, data acquisition. Thomas Kätterer – data acquisition, data processing. Martin A. Bolinder – data acquisition, data processing. Jonathan Sanderman – site management, data collection, data processing. Pierre Barré – project conception, data processing, data validation.

Corresponding author

Correspondence to Kenji Fujisaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujisaki, K., Ferchaud, F., Clivot, H. et al. Data from long-term experiments in temperate croplands to evaluate soil organic carbon models. Sci Data (2026). https://doi.org/10.1038/s41597-026-06863-7

Download citation

  • Received: 12 September 2025

  • Accepted: 06 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06863-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing