Abstract
Dealing with erroneous, unexpected, susceptible, flawed, vulnerable, and intricate information is simplified with the use of a single-valued neutrosophic set (svns). This is because of the fact that these types of information are more sensitive to error. This is due to the fact that these particular kinds of information are more prone to error. The ideas of fuzzy sets and intuitionistic fuzzy sets have both undergone further development as a direct result of the development of this new theory. In svns, indeterminacy is quantified in a way that is both obvious and unambiguous, and truth membership, indeterminacy membership, and falsity membership are all completely independent of one another. In algebraic analysis, certain binary operations can be thought of as interacting with algebraic modules. These modules are intricate and ubiquitous structures. There are many different applications for modules to be used in. Modules find use in an extremely wide variety of different kinds of businesses and market segments. We investigate the idea of \((\mu ,\nu ,\omega )\)-svns and relate it to \((\mu ,\nu ,\omega )\)-single-valued neutrosophic module and \((\mu ,\nu ,\omega )\)-single-valued neutrosophic submodule, respectively. The goals of this research are to comprehend the algebraic structures of a \((\mu ,\nu ,\omega )\)-single-valued neutrosophic submodule of a classical module and enhance the legitimacy of this technique by discussing numerous essential aspects. Both of these goals will be accomplished through the course of this study. The strategies that we have developed in this manuscript are more generalizable than those that have been utilized in the past. These strategies include fuzzy sets, intuitionistic fuzzy sets, and neutrosophic sets.
Similar content being viewed by others
Introduction
We are expressing certain symbols in the Table 1, which will be used throughout this manuscript.
The limitations of previously established fuzzy algebra structures are eradicated by the implementation of a recently proposed fuzzy algebraic structure. The use of regular mathematics is not always possible in many aspects of day-to-day life because of the prevalence of ambiguity and uncertainty in those settings. The application of a number of fuzzy algebraic structures, such as fuzzy subgroups, fuzzy rings, fuzzy sub-fields, and fuzzy sub-modules, can be very helpful in resolving issues of this nature. The ideas of the fuzzy set and the intuitionistic fuzzy set are expanded upon by use of svns, which is a powerful and comprehensive formal framework.
In the year 1980, Smarandache established the subfield of philosophy that is today known as neutrosophy. It is the cornerstone upon which such fields as neutrosophic logic, probability, set theory, and statistical analysis are built. As a consequence of this, he came up with the theory of neutrosophic logic and set, which provides an approximation of every statement of neutrosophic logic with the benefits of truth in the subcategory T, indeterminacy value in a subcategory I, and falsehood in the subcategory F. In light of the fact that the fuzzy set theory can only be used to depict situations in which there is uncertainty, the neutrosophic theory is the only viable option for describing scenarios in which there is indeterminacy. In1, Smarandache provided an explanation of the neutrosophic idea, and in2,3, Wang provided additional information on single-valued neutrosophic sets.
Researchers have already done extensive research on fuzzy and intuitionistic fuzzy sets4,5,6,7, fuzzy logics8,9,10, paraconsistent sets11,12, fuzzy groups13,14,15,16, complex fuzzy sets17,18,19, fuzzy subrings and ideals20,21,22,23,24,25,26, single-valued neutrosophic graphs and lattices27,28,29, single-valued neutrosophic algebras30,31 and many more interesting fields.
The neutrosophic theory ultimately led to the development of the algebraic neutrosophic structural principle. Kandasamy and Smarandache described shifts in the paradigm of algebraic structure theory in their paper which may be found in1,2. The term “svns” is used to characterize them in addition to the terms “algebraic structures” and “topological structures”32,33,34. This concept was utilized by Çetkin, Aygün, and Çetkin in the context of neutrosophic subgroups35, neutrosophic subrings36, and neutrosophic submodules37,38 of a certain classical group, ring, and module. Several recent research on the process of group decision making with a variety of different characteristics are described in39,40,41.
In actuality, modules are one of the most fundamental and diverse algebraic structures studied in terms of a number of binary operations. In this study, we investigate the concept of \((\mu ,\nu ,\omega )\)-single-valued neutrosophic submodules, as well as the suggested concepts basic properties and characterizations. We also demonstrate that svns may not be an svnsm of module M, but \((\mu ,\nu ,\omega )\)-svns must be an svnsm of module M. The essay is organised as follows: in “Preliminaries” section, we explain several basic ideas for svns. The “\({(\mu ,\nu ,\omega )}\)-single-valued neutrosophic submodules” section explains the concept of \((\mu ,\nu ,\omega )\)-svnsm and some idealistic findings.
Preliminaries
This section covers basic definitions related to svns. In this section, we also present fundamental properties and relationships between svnss.
Definition 2.1
1 On the universe set X a svns P is defined as:
where \(T,I,F:X\rightarrow [0,1],\) and \(0\le T_{P}{(m)}+ I_{P}{(m)}+F_{P}{(m)}\le 3\), \(\forall ~m \in X\), \(T_{P}{(m)}, I_{P}{(m)}, F_{P}{(m)} \in [0, 1]\).
\(T_{P}\), \(I_{P}\), \(F_{P}\) represents the functions of truth, indeterminacy, and falsity-membership, respectively.
Definition 2.2
2 Suppose P and Q be two svnss on X and Y. The cartesian product of P and Q is then a svns on \(X \times Y\), denoted by \(P ~\times ~ Q\) and it is defined as:
where
That is,
Definition 2.3
35 Let P be a svns on X and \(\alpha \in [0, 1]\). The \(\alpha\)-level sets on P can be determined:
Proposition 2.4
2 Let the svnss on the common universe X be P, Q and S. Then the following conditions must hold.
-
1.
\(P\cup Q = Q\cup P, ~P\cap Q = Q\cap P\).
-
2.
\(P\cup (Q\cup S) = (P\cup Q)\cup S, ~P\cap (Q\cap S) = (P\cap Q)\cap S\).
-
3.
\(P\cup (Q\cap S) = (P\cup Q)\cap (P\cup S), ~P\cap (Q\cup S) = (P\cap Q)\cup (P\cap S)\).
-
4.
\(P\backslash (Q\cap S) = (P\backslash Q)\cup (P\backslash S), ~P\backslash (Q \cup S) = (P\backslash Q)\cap (P\backslash S)\).
-
5.
\(c(P\cup Q)=c(P)\cap c(Q),~c(P\cap Q)=c(P)\cup c(Q)\). Note: c(P) represent complement of P.
Definition 2.5
2 Let P & Q be two single-valued neutrosophic sets (svnss) on X. Then
-
1.
\(P\subseteq Q\), if and only if \(P{(m)} \le Q{(m)}\).
That is,
$$\begin{aligned} T_{P}{(m)} \le T_{Q}{(m)},~I_{P}{(m)} \le I_{Q}{(m)},~and~F_{P}{(m)} \ge F_{Q}{(m)}. \end{aligned}$$Also \(P=Q\) if and only if \(P \subseteq Q\) and \(Q \subseteq P\).
-
2.
\(P\cup Q = \{ \langle \max \{T_{P}{(m)}, T_{Q}{(m)}\}, \max \{I_{P}{(m)}, I_{Q}{(m)}\}, \min \{F_{P}{(m)}, F_{Q}{(m)}\}\rangle , \forall ~m\in X\}.\)
-
3.
\(P\cap Q = \{ \langle \min \{T_{P}{(m)}, T_{Q}{(m)}\}, \min \{I_{P}{(m)}, I_{Q}{(m)}\}, \max \{F_{P}{(m)}, F_{Q}{(m)}\}\rangle , \forall ~m\in X\}.\)
-
4.
\((P\backslash Q)=\{ \langle \min \{T_{P}{(m)}, T_{Q}{(m)}\}, \min \{I_{P}{(m)}, I_{Q}{(m)}\}, \max \{F_{P}{(m)}, F_{Q}{(m)}\rangle ,\forall ~m\in X\}.\)
-
5.
\(c(P) = \{ \langle F_{P}{(m)}, 1-I_{P}{(m)}, T_{P}{(m)}, \forall ~m\in X \rangle \}.\) Here \(c(c(P)) = P\).
Definition 2.6
35 Let define a function \(g : X_{1} \longrightarrow X_{2}\) and P, Q be the svnss of \(X_{1}\) and \(X_{2}\), respectively. Then the image of a svns P is also a svns of \(X_{2}\) and as described below:
Where
The preimage of a svns Q is a svns of \(X_{1}\) and defined as:
\({(\mu ,\nu ,\omega )}\)-single-valued neutrosophic submodules
We define and investigate the basic properties and characterizations of a \((\mu ,\nu ,\omega )\)-svnm and \((\mu ,\nu ,\omega )\)-svnsm of a given classical module over a ring in this section. We typically start with some introductory \((\mu ,\nu ,\omega )\)-svns, the cartesian product of \((\mu ,\nu ,\omega )\)-svnss, the \(\alpha\)-level set on \((\mu ,\nu ,\omega )\)-svns, operations and properties of \((\mu ,\nu ,\omega )\)-svns, and then study crucial results, propositions, theorems and several examples related to \((\mu ,\nu ,\omega )\)-svnm and \((\mu ,\nu ,\omega )\)-svnsm of a given classical module over a ring R. In addition, we presented various homomorphism theorems for validity of \((\mu ,\nu ,\omega )\)-svnsm.
Definition 3.1
If P be a single-valued neutrosophic subset of X then \({(\mu ,\nu ,\omega )}\)-single-valued neutrosophic subset P of X is categorize as:
where
such that
Where \(\mu ,\nu ,\omega \in [0, 1]\), also \(T,I,F: X\rightarrow [0,1]\), such that \(T_{P}^{\mu }\), \(I_{P}^{\nu }\), \(F_{P}^{\omega }\) represents the functions of truth, indeterminacy, and falsity-membership, respectively.
Definition 3.2
Let X be a space of objects, with m denoting a generic entity belong to X. A \({(\mu ,\nu ,\omega )}\)-svns P on X is symbolized by truth \(T_{P}^{\mu }\), indeterminacy \(T_{P}^{\mu }\) and falsity-membership function \(F_{P}^{\omega }\), respectively. For every m in X, \(T_{P}^{\mu }(m), I_{P}^{\nu }(m), F_{P}^{\omega }(m) \in [0, 1]\), a \({(\mu ,\nu ,\omega )}\)-svns P write accordingly as:
Definition 3.3
Let P and Q be two \({(\mu ,\nu ,\omega )}\)-svnss on X and Y, respectively. Then the Cartesian product of \(P^{(\mu ,\nu ,\omega )}\) and \(Q^{(\mu ,\nu ,\omega )}\) which is denoted by \(P^{(\mu ,\nu ,\omega )} \times Q^{(\mu ,\nu ,\omega )}\) is a \({(\mu ,\nu ,\omega )}\)-svns on \(X \times Y\) and it is defined as:
where
That is,
Definition 3.4
Let P be a \({(\mu ,\nu ,\omega )}\)-svns on X and \(\alpha \in [0, 1]\). The \(\alpha\)-level sets on P can be determined as:
Definition 3.5
Let P and Q be two \({(\mu ,\nu ,\omega )}\)-svnss on X. Then
-
1.
\(P^{(\mu ,\nu ,\omega )}\subseteq Q^{(\mu ,\nu ,\omega )} ~~\Leftrightarrow P^{(\mu ,\nu ,\omega )}{(m)} \le Q^{(\mu ,\nu ,\omega )}{(m)}\).
That is,
$$\begin{aligned} T_{P}^{\mu }{(m)}\le & {} T_{Q}^{\mu }{(m)},\\ I_{P}^{\nu }{(m)}\le & {} I_{Q}^{\nu }{(m)},\\ F_{P}^{\omega }{(m)}\ge & {} F_{Q}^{\omega }{(m)}, \end{aligned}$$and
$$\begin{aligned} P^{(\mu ,\nu ,\omega )}& = Q^{(\mu ,\nu ,\omega )} \Leftrightarrow P^{(\mu ,\nu ,\omega )} \subseteq Q^{(\mu ,\nu ,\omega )} ~and~ Q^{(\mu ,\nu ,\omega )} \subseteq P^{(\mu ,\nu ,\omega )}. \end{aligned}$$ -
2.
The union of \(P^{(\mu ,\nu ,\omega )}\) and \(Q^{(\mu ,\nu ,\omega )}\) is denoted by
$$\begin{aligned} S^{(\mu ,\nu ,\omega )} = P^{(\mu ,\nu ,\omega )}~\cup ~ Q^{(\mu ,\nu ,\omega )}, \end{aligned}$$and defined as
$$\begin{aligned} S^{(\mu ,\nu ,\omega )}{(m)} = P^{(\mu ,\nu ,\omega )}{(m)}~\vee ~ Q^{(\mu ,\nu ,\omega )}{(m)}, \end{aligned}$$where
$$\begin{aligned} P^{(\mu ,\nu ,\omega )}{(m)}\vee Q^{(\mu ,\nu ,\omega )}{(m)} = \{ \langle T_{P}^{\mu }{(m)}\vee T_{Q}^{\mu }{(m)}, I_{P}^{\nu }{(m)}\vee I_{Q}^{\nu }{(m)}, F_{P}^{\omega }{(m)}\wedge F_{Q}^{\omega }{(m)} \rangle ,~ \forall ~ m\in X\}. \end{aligned}$$That is,
$$\begin{aligned} T_{S}^{\mu }{(m)}&= \max \{T_{P}^{\mu }{(m)}, ~T_{Q}^{\mu }{(m)}\},\\ I_{S}^{\nu }{(m)}&= \max \{I_{P}^{\nu }{(m)}, ~I_{Q}^{\nu }{(m)}\},\\ F_{S}^{\omega }{(m)}&= \min \{F_{P}^{\omega }{(m)}, ~F_{Q}^{\omega }{(m)}\}. \end{aligned}$$ -
3.
The intersection of \(P^{(\mu ,\nu ,\omega )}\) and \(Q^{(\mu ,\nu ,\omega )}\) is denoted by
$$\begin{aligned} S^{(\mu ,\nu ,\omega )} = P^{(\mu ,\nu ,\omega )}\cap Q^{(\mu ,\nu ,\omega )}, \end{aligned}$$and defined as
$$\begin{aligned} S^{(\mu ,\nu ,\omega )}{(m)} = P^{(\mu ,\nu ,\omega )}{(m)}\wedge Q^{(\mu ,\nu ,\omega )}{(m)}, \end{aligned}$$where
$$\begin{aligned} P^{(\mu ,\nu ,\omega )}{(m)}\wedge Q^{(\mu ,\nu ,\omega )}{(m)} = \{ \langle T_{P}^{\mu }{(m)}\wedge T_{Q}^{\mu }{(m)}, ~I_{P}^{\nu }{(m)}\wedge I_{Q}^{\nu }{(m)},~F_{P}^{\omega }{(m)}\vee F_{Q}^{\omega }{(m)} \rangle , ~\forall ~ m\in X\}. \end{aligned}$$That is,
$$\begin{aligned} T_{S}^{\mu }{(m)}&= \min \{T_{P}^{\mu }{(m)}, T_{Q}^{\mu }{(m)}\},\\ I_{S}^{\nu }{(m)}&= \min \{I_{P}^{\nu }{(m)}, I_{Q}^{\nu }{(m)}\},\\ F_{S}^{\omega }{(m)}&= \max \{F_{P}^{\omega }{(m)}, F_{Q}^{\omega }{(m)}\}. \end{aligned}$$ -
4.
\((P^{(\mu ,\nu ,\omega )}\backslash Q^{(\mu ,\nu ,\omega )})=\{ \langle \min \{T_{P}^{\mu }{(m)}, T_{Q}^{\mu }{(m)}\}, \min \{I_{P}^{\nu }{(m)}, I_{Q}^{\nu }{(m)}\}, \max \{F_{P}^{\omega }{(m)}, F_{Q}^{\omega }{(m)}\rangle ,\forall ~m\in X\}.\)
-
5.
\(c(P^{(\mu ,\nu ,\omega )}) = \{ \langle (F_{P}^{\omega }{(m)}, 1-I_{P}^{\nu }{(m)}, T_{P}^{\mu }{(m)}), \rangle ,\forall ~m\in X \}.\) Here, \(c(c(P^{(\mu ,\nu ,\omega )}) = P^{(\mu ,\nu ,\omega )}\).
Proposition 3.6
Let the \({(\mu ,\nu ,\omega )}\)-svnss on the common universe X be P, Q and S. Then the following conditions must satisfy.
-
1.
\(P^{(\mu ,\nu ,\omega )}\cup Q^{(\mu ,\nu ,\omega )} = Q^{(\mu ,\nu ,\omega )}\cup P^{(\mu ,\nu ,\omega )}, ~P^{(\mu ,\nu ,\omega )}\cap Q^{(\mu ,\nu ,\omega )} = Q^{(\mu ,\nu ,\omega )}\cap P^{(\mu ,\nu ,\omega )}\).
-
2.
\(P^{(\mu ,\nu ,\omega )}\cup (Q^{(\mu ,\nu ,\omega )}\cup S^{(\mu ,\nu ,\omega )}) = (P^{(\mu ,\nu ,\omega )}\cup Q^{(\mu ,\nu ,\omega )})\cup S^{(\mu ,\nu ,\omega )}\), \(P^{(\mu ,\nu ,\omega )}\cap (Q^{(\mu ,\nu ,\omega )}\cap S^{(\mu ,\nu ,\omega )}) = (P^{(\mu ,\nu ,\omega )}\cap Q^{(\mu ,\nu ,\omega )})\cap S^{(\mu ,\nu ,\omega )}\).
-
3.
\(P^{(\mu ,\nu ,\omega )}\cup (Q^{(\mu ,\nu ,\omega )}\cap S^{(\mu ,\nu ,\omega )}) = (P^{(\mu ,\nu ,\omega )}\cup Q^{(\mu ,\nu ,\omega )})\cap (P^{(\mu ,\nu ,\omega )}\cup S^{(\mu ,\nu ,\omega )})\), \(P^{(\mu ,\nu ,\omega )}\cap (Q^{(\mu ,\nu ,\omega )}\cup S^{(\mu ,\nu ,\omega )}) = (P^{(\mu ,\nu ,\omega )}\cap Q^{(\mu ,\nu ,\omega )})\cup (P^{(\mu ,\nu ,\omega )}\cap S^{(\mu ,\nu ,\omega )})\).
-
4.
\(P^{(\mu ,\nu ,\omega )}\backslash (Q^{(\mu ,\nu ,\omega )}\cap S^{(\mu ,\nu ,\omega )}) = (P^{(\mu ,\nu ,\omega )}\backslash Q^{(\mu ,\nu ,\omega )})\cup (P^{(\mu ,\nu ,\omega )}\backslash S^{(\mu ,\nu ,\omega )})\), \(P^{(\mu ,\nu ,\omega )}\backslash (Q^{(\mu ,\nu ,\omega )} \cup S^{(\mu ,\nu ,\omega )}) = (P^{(\mu ,\nu ,\omega )}\backslash Q^{(\mu ,\nu ,\omega )})\cap (P^{(\mu ,\nu ,\omega )}\backslash S^{(\mu ,\nu ,\omega )})\).
-
5.
\(c(P^{(\mu ,\nu ,\omega )}\cup Q^{(\mu ,\nu ,\omega )})=c(P^{(\mu ,\nu ,\omega )})\cap c(Q^{(\mu ,\nu ,\omega )}),~c(P^{(\mu ,\nu ,\omega )}\cap Q^{(\mu ,\nu ,\omega )})=c(P^{(\mu ,\nu ,\omega )})\cup c(Q^{(\mu ,\nu ,\omega )})\).
Definition 3.7
Suppose a function \(g : X_{1} \longrightarrow X_{2}\) and P, Q be the two \({(\mu ,\nu ,\omega )}\)-svnss of \(X_{1}\) and \(X_{2}\), respectively. Then the image of a \({(\mu ,\nu ,\omega )}\)-svns \(P^{(\mu ,\nu ,\omega )}\) is a \({(\mu ,\nu ,\omega )}\)-svns of \(X_{2}\) and it is defined as follows:
Where
The preimage of a \({(\mu ,\nu ,\omega )}\)-svns Q is a \({(\mu ,\nu ,\omega )}\)-svns of \(X_{1}\) and defined as follows:
Note: We define and explore the notion of a \((\mu ,\nu ,\omega )\)-svnsm of a given classical module M over a ring R. R is used throughout this article to represent a commutative ring with unity 1.
Definition 3.8
Let M is a module over a ring R. A \({(\mu ,\nu ,\omega )}\)-svns P on M is called a \({(\mu ,\nu ,\omega )}\)-svnsm of M if the following conditions are satisfied:
-
M1: \(P^{(\mu ,\nu ,\omega )}(0) = {\tilde{X}}\). That is
$$\begin{aligned} T_{P}^{\mu }(0) = 1,~I_{P}^{\nu }(0) = 1,~F_{P}^{\omega }(0) = 0. \end{aligned}$$ -
M2:
$$\begin{aligned} P^{(\mu ,\nu ,\omega )}(m + n) \ge P^{(\mu ,\nu ,\omega )}{(m)} \wedge P^{(\mu ,\nu ,\omega )}(n), \forall ~ m,n \in M. \end{aligned}$$That is,
$$\begin{aligned} T_{P}^{\mu }(m + n)\ge & {} T_{P}^{\mu }{(m)}\wedge T_{P}^{\mu }(n),\\ I_{P}^{\nu }(m + n)\ge & {} I_{P}^{\nu }{(m)}\wedge I_{P}^{\nu }(n),\\ F_{P}^{\omega }(m + n)\le & {} F_{P}^{\omega }{(m)}\vee F_{P}^{\omega }(n). \end{aligned}$$ -
M3:
$$\begin{aligned} P^{(\mu ,\nu ,\omega )}(r m) \ge P^{(\mu ,\nu ,\omega )}{(m)}, \forall ~m\in M, r\in R. \end{aligned}$$That is,
$$\begin{aligned} T_{P}^{\mu }(r m)\ge & {} T_{P}^{\mu }{(m)},\\ I_{P}^{\nu }(r m)\ge & {} I_{P}^{\nu }{(m)},\\ F_{P}^{\omega }(r m)\le & {} F_{P}^{\omega }{(m)}. \end{aligned}$$
\((\mu ,\nu ,\omega )\)-svnsm(M) denotes the set of all \((\mu ,\nu ,\omega )\)-single-valued neutrosophic submodules of M.
Example 3.9
Take, for example, classical ring \(R = Z_{4} = \{ {\bar{0}}, {\bar{1}}, {\bar{2}}, {\bar{3}}\}\). Since each ring is a module on itself, we consider \(M = Z_{4}\) as a classical module. Define svns P as follows:
It is clear that the svns P is a not a svnsm of the module M.
Let \(\mu =0.6\), \(\nu =0.3\) and \(\omega =0.6\), So \({(\mu ,\nu ,\omega )}\)-svns become
It is clear that the \({(\mu ,\nu ,\omega )}\)-svns P is a \({(\mu ,\nu ,\omega )}\)-svnsm of the module \(M = Z_{4}\).
Definition 3.10
Let P be a \({(\mu ,\nu ,\omega )}\)-svns on M, then \(-P^{(\mu ,\nu ,\omega )}\) is a \({(\mu ,\nu ,\omega )}\)-svns on M, defined as follows:
Proposition 3.11
If P is a \({(\mu ,\nu ,\omega )}\)-svnsm of an R-module M, then \((-1)P^{(\mu ,\nu ,\omega )}=-P^{(\mu ,\nu ,\omega )}\).
Proof
Let \(m\in M\) be arbitrary element
This shows that \(T_{(-1)P}^{\mu }{(m)}=T_{-P}^{\mu }{(m)}\), \(I_{(-1)P}^{\nu }{(m)} = I_{-P}^{\mu }{(m)}\) and \(F_{(-1)P}^{\omega }{(m)} = F_{-P}^{\omega }{(m)}\).
Thus, this holds true for each \(m\in M\),
\(\square\)
Definition 3.12
Let P be a \({(\mu ,\nu ,\omega )}\)-svns on an R-module M with \(r \in R\). Set rP as a neutrosophic set to M, define as:
Definition 3.13
Let P, Q be \({(\mu ,\nu ,\omega )}\)-svnss on M. Then their sum
\(P^{(\mu ,\nu ,\omega )} + Q^{(\mu ,\nu ,\omega )}\) is a \({(\mu ,\nu ,\omega )}\)-svns on M, defined as follows:
Proposition 3.14
If P and Q are \({(\mu ,\nu ,\omega )}\)-svnss on M with \(P^{(\mu ,\nu ,\omega )} \subseteq Q^{(\mu ,\nu ,\omega )}\), then \(rP^{(\mu ,\nu ,\omega )}\subseteq rQ^{(\mu ,\nu ,\omega )}\), for each \(r\in R\).
Proof
By definition, it is obvious. \(\square\)
Proposition 3.15
If P is \({(\mu ,\nu ,\omega )}\)-svns on M, then \(T^{\mu }_{rP}(r m) \ge T_{P}^{\mu }{(m)}, I^{\nu }_{rP}(r m) \ge I_{P}^{\nu }{(m)}\) and \(F^{\omega }_{rP}(r m) \le F_{P}^{\omega }{(m)}\).
Proof
By definition, it is obvious. \(\square\)
Proposition 3.16
If P is a \({(\mu ,\nu ,\omega )}\)-svns on M, then \(r(sP^{(\mu ,\nu ,\omega )}) = (rs)P^{(\mu ,\nu ,\omega )}\), \(\forall\) \(r,~s\in R\).
Proof
Consider \(r, s\in R\) be arbitrary whereas \(m\in M\).
So we have the following equalities
Therefore,
\(\Rightarrow r(sP^{(\mu ,\nu ,\omega )})= (T^{\mu }_{(rs)P}, I^{\nu }_{(rs)P}, F^{\omega }_{(rs)P}) = (rs)P^{(\mu ,\nu ,\omega )}.\) \(\square\)
Proposition 3.17
If P and Q are \({(\mu ,\nu ,\omega )}\)-svnss on M, then
-
1.
\(T_{Q}^{\mu }(rm) \ge T_{P}^{\mu }{(m)}\), for each \(m\in M\), if and only if \(T^{\mu }_{rP} \le T_{Q}^{\mu }\).
-
2.
\(I_{Q}^{\nu }(rm) \ge I_{P}^{\nu }{(m)}\), for each \(m\in M\), if and only if \(I^{\nu }_{rP} \le I_{Q}^{\nu }\).
-
3.
\(F_{Q}^{\omega }(rm) \le F_{P}^{\omega }{(m)}\), for each \(m\in M\), if and only if \(F^{\omega }_{rP} \ge F_{Q}^{\omega }\).
Proof
(1) Suppose \(T_{Q}^{\mu }(r m) \ge T_{P}^{\mu }{(m)}\), for each \(m\in M\), then
So,
Conversely, suppose \(T^{\mu }_{rP} \le T_{Q}^{\mu }\). Then \(T^{\mu }_{rP}{(m)} = T_{Q}^{\mu }{(m)}\), for each \(m\in M\).
Hence,
(2) Suppose \(I_{Q}^{\nu }(r m) \ge I_{P}^{\nu }{(m)}\), for each \(m\in M\), then
So,
Conversely, suppose \(I^{\nu }_{rP} \le I_{Q}^{\nu }\). Then \(I^{\nu }_{rP}{(m)} = I_{Q}^{\nu }{(m)}\), for each \(m\in M.\)
Hence,
(3) Suppose \(F_{Q}^{\omega }(r m) \le I_{P}^{\omega }{(m)}\), for each \(m\in M\), then
So,
Conversely, suppose \(F^{\omega }_{rP} \ge F_{Q}^{\omega }\). Then \(F^{\omega }_{rP}{(m)} = F_{Q}^{\omega }{(m)}\), for each \(m\in M.\)
Hence,
\(\square\)
Proposition 3.18
If P and Q are \({(\mu ,\nu ,\omega )}\)-svnss on M, then \(r(P^{(\mu ,\nu ,\omega )} + Q^{(\mu ,\nu ,\omega )}) = rP^{(\mu ,\nu ,\omega )} + rQ^{(\mu ,\nu ,\omega )},~\forall ~ r\in R.\)
Proof
Let P and Q are \({(\mu ,\nu ,\omega )}\)-svnss on M, \(m\in M\) and \(r\in R\).
So we have the equalities
Hence,
\(\square\)
Proposition 3.19
If P and Q are \({(\mu ,\nu ,\omega )}\)-svnss on M, then
-
1.
\(T^{\mu }_{rP+sQ}(rm + sn) \ge T_{P}^{\mu }{(m)} \wedge T_{Q}^{\mu }(n)\),
-
2.
\(I^{\nu }_{rP+sQ}(rm + sn) \ge I_{P}^{\nu }{(m)} \wedge I_{Q}^{\nu }(n)\),
-
3.
\(F^{\omega }_{rP+sQ}(rm + sn) \le F_{P}^{\omega }{(m)} \vee F_{Q}^{\omega }(n)\), for each \(m, n\in M\), \(r, s \in R\).
Proof
It is easy to prove with the help of Definitions 3.13, 3.12 and Proposition 3.15. \(\square\)
Example 3.20
Take an example for above Proposition 3.19, classical ring \(R = Z_{2} = \{ {\bar{0}}, {\bar{1}}\}\). Since each ring is a module on itself, we consider \(M = Z_{2}\) as a classical module. Define svnss P and Q as follows:
Let \(\mu =0.6\), \(\nu =0.3\) and \(\omega =0.6\), So \({(\mu ,\nu ,\omega )}\)-svnss P and Q becomes
We can examine that for truth-membership
\(T_{P}^{\mu }{(0)}=1\), \(T_{P}^{\mu }{(1)}=0.6\), \(T_{Q}^{\mu }{(0)}=1\), \(T_{Q}^{\mu }{(1)}=0.8\) and
\(T_{P}^{\mu }{(0)} \wedge T_{Q}^{\mu }{(0)}=1\), \(T_{P}^{\mu }{(0)} \wedge T_{Q}^{\mu }{(1)}=0.8\), \(T_{P}^{\mu }{(1)} \wedge T_{Q}^{\mu }{(0)}=0.6\), and \(T_{P}^{\mu }{(1)} \wedge T_{Q}^{\mu }{(1)}=0.6\).
Also we can see that
\(T_{rP}^{\mu }{(0)}=1\), \(T_{rP}^{\mu }{(1)}=0.6\), \(T_{sQ}^{\mu }{(0)}=1\), \(T_{sQ}^{\mu }{(1)}=0.8\) and \(T_{rP+sQ}^{\mu }{(0)}=1\), \(T_{rP+sQ}^{\mu }{(1)}=0.8\).
-
Case 1: Let \(m=0,~n=0\) and \(r, s \in R=Z_{2}\), clearly \(T^{\mu }_{rP+sQ}(r0 + s0)=1 \ge T_{P}^{\mu }{(0)} \wedge T_{Q}^{\mu }(0)=1\).
-
Case 2: Let \(m=0,~n=1\) and \(r, s \in R=Z_{2}\), clearly \(T^{\mu }_{rP+sQ}(r0 + s1)=1 ~or~ 0.8 \ge T_{P}^{\mu }{(0)} \wedge T_{Q}^{\mu }(1)=0.8\).
-
Case 3: Let \(m=1,~n=0\) and \(r, s \in R=Z_{2}\), clearly \(T^{\mu }_{rP+sQ}(r1 + s0)=1 ~or~ 0.8 \ge T_{P}^{\mu }{(1)} \wedge T_{Q}^{\mu }(0)=0.6\).
-
Case 4: Let \(m=1,~n=1\) and \(r, s \in R=Z_{2}\), clearly \(T^{\mu }_{rP+sQ}(r1 + s1)=1 ~or~ 0.8 \ge T_{P}^{\mu }{(1)} \wedge T_{Q}^{\mu }(0)=0.6\).
\(\Rightarrow\) \({(\mu ,\nu ,\omega )}\)-svnss P and Q satisfy the condition
(1) \(T^{\mu }_{rP+sQ}(rm + sn) \ge T_{P}^{\mu }{(m)} \wedge T_{Q}^{\mu }(n)\),
Similarly we can show that for indeterminacy membership
(2) \(I^{\nu }_{rP+sQ}(rm + sn) \ge I_{P}^{\nu }{(m)} \wedge I_{Q}^{\nu }(n)\),
Now, we prove for the falsity membership
\(F_{P}^{\mu }{(0)}=0\), \(F_{P}^{\mu }{(1)}=0.6\), \(F_{Q}^{\mu }{(0)}=0\), \(F_{Q}^{\mu }{(1)}=0.4\) and
\(F_{P}^{\mu }{(0)} \vee F_{Q}^{\mu }{(0)}=0\), \(F_{P}^{\mu }{(0)} \vee F_{Q}^{\mu }{(1)}=0.4\), \(F_{P}^{\mu }{(1)} \vee F_{Q}^{\mu }{(0)}=0.6\), and \(F_{P}^{\mu }{(1)} \vee F_{Q}^{\mu }{(1)}=0.6\).
Also we can see that
\(F_{rP}^{\mu }{(0)}=0\), \(F_{rP}^{\mu }{(1)}=0.6\), \(F_{sQ}^{\mu }{(0)}=0\), \(F_{sQ}^{\mu }{(1)}=0.4\) and \(F_{rP+sQ}^{\mu }{(0)}=0\), \(F_{rP+sQ}^{\mu }{(1)}=0\).
-
Case 1: Let \(m=0,~n=0\) and \(r, s \in R=Z_{2}\), clearly \(F^{\mu }_{rP+sQ}(r0 + s0)=0 \le F_{P}^{\mu }{(0)} \vee F_{Q}^{\mu }(0)=0\).
-
Case 2: Let \(m=0,~n=1\) and \(r, s \in R=Z_{2}\), clearly \(F^{\mu }_{rP+sQ}(r0 + s1)=0 \le F_{P}^{\mu }{(0)} \vee F_{Q}^{\mu }(1)=0.4\).
-
Case 3: Let \(m=1,~n=0\) and \(r, s \in R=Z_{2}\), clearly \(F^{\mu }_{rP+sQ}(r1 + s0)=0 \le F_{P}^{\mu }{(1)} \vee F_{Q}^{\mu }(0)=0.6\).
-
Case 4: Let \(m=1,~n=1\) and \(r, s \in R=Z_{2}\), clearly \(F^{\mu }_{rP+sQ}(r1 + s1)=0 \le F_{P}^{\mu }{(1)} \vee F_{Q}^{\mu }(0)=0.6\).
\(\Rightarrow\) \({(\mu ,\nu ,\omega )}\)-svnss P and Q satisfy the condition
(3) \(F^{\omega }_{rP+sQ}(rm + sn) \le F_{P}^{\omega }{(m)} \vee F_{Q}^{\omega }(n)\), for each \(m, n\in M\), \(r, s \in R\).
Proposition 3.21
If P, Q, S are \({(\mu ,\nu ,\omega )}\)-svnss on M, Then, for each \(r, s \in R\), the followings are satisfied;
-
1.
\(T^{\mu }_{S}(rm + sn) \ge T_{P}^{\mu }{(m)} \wedge T_{Q}^{\mu }(n)\), for all \(m, n\in M\) if and only if \(T^{\mu }_{rP+sQ} \le T^{\mu }_{S}\).
-
2.
\(I^{\nu }_{S}(rm + sn) \ge I_{P}^{\nu }{(m)} \wedge I_{Q}^{\nu }(n)\), for all \(m, n\in M\) if and only if \(I_{rP+sQ}^{\nu } \le I_{S}^{\nu }\).
-
3.
\(F_{S}^{\omega }(rm + sn) \le F_{P}^{\omega }{(m)} \vee F_{Q}^{\omega }(n)\), for all \(m, n\in M\) if and only if \(F_{rP+sQ}^{\omega } \ge F_{S}^{\omega }\).
Proof
It is easy to prove with the help of Proposition 3.19. \(\square\)
Example 3.22
Take an example for above Proposition 3.21, Let us take the classical ring \(R = Z_{2} = \{ {\bar{0}}, {\bar{1}}\}\). Since each ring is a module on itself, we consider \(M = Z_{2}\) as a classical module. Define svnss P, Q and S as follows:
Let \(\mu =0.6\), \(\nu =0.3\) and \(\omega =0.6\), So \({(\mu ,\nu ,\omega )}\)-svnss P, Q and S becomes
We can see that for truth-membership
\(T_{P}^{\mu }{(0)}=1\), \(T_{P}^{\mu }{(1)}=0.6\), \(T_{Q}^{\mu }{(0)}=1\), \(T_{Q}^{\mu }{(1)}=0.8\), \(T_{S}^{\mu }{(0)}=1\), \(T_{S}^{\mu }{(1)}=0.6\) and
\(T_{P}^{\mu }{(0)} \wedge T_{Q}^{\mu }{(0)}=1\), \(T_{P}^{\mu }{(0)} \wedge T_{Q}^{\mu }{(1)}=0.6\), \(T_{P}^{\mu }{(1)} \wedge T_{Q}^{\mu }{(0)}=0.6\), and \(T_{P}^{\mu }{(1)} \wedge T_{Q}^{\mu }{(1)}=0.6\).
Also we can see that
\(T_{rP}^{\mu }{(0)}=1\), \(T_{rP}^{\mu }{(1)}=0.6\), \(T_{sQ}^{\mu }{(0)}=1\), \(T_{sQ}^{\mu }{(1)}=0.6\) and \(T_{rP+sQ}^{\mu }{(0)}=1\), \(T_{rP+sQ}^{\mu }{(1)}=0.6\).
-
Case 1: Let \(m=0,~n=0\) and \(r, s \in R=Z_{2}\), clearly \(T^{\mu }_{S}(r0 + s0)=1 \ge T_{P}^{\mu }{(0)} \wedge T_{Q}^{\mu }(0)=1\).
-
Case 2: Let \(m=0,~n=1\) and \(r, s \in R=Z_{2}\), clearly \(T^{\mu }_{S}(r0 + s1)=1 ~or~ 0.6 \ge T_{P}^{\mu }{(0)} \wedge T_{Q}^{\mu }(1)=0.6\).
-
Case 3: Let \(m=1,~n=0\) and \(r, s \in R=Z_{2}\), clearly \(T^{\mu }_{S}(r1 + s0)=1 ~or~ 0.6 \ge T_{P}^{\mu }{(1)} \wedge T_{Q}^{\mu }(0)=0.6\).
-
Case 4: Let \(m=1,~n=1\) and \(r, s \in R=Z_{2}\), clearly \(T^{\mu }_{S}(r1 + s1)=1 ~or~ 0.6 \ge T_{P}^{\mu }{(1)} \wedge T_{Q}^{\mu }(0)=0.6\).
In all cases we can see that \(T^{\mu }_{S}(rm + sn) \ge T_{P}^{\mu }{(m)} \wedge T_{Q}^{\mu }(n),~\forall ~ m,n \in M\)
\(\Leftrightarrow\) \(T_{rP+sQ}^{\mu }{(0)}=1 \le T_{S}^{\mu }{(0)}=1,~and~ T_{rP+sQ}^{\mu }{(1)}=0.6 \le T_{S}^{\mu }{(1)}=0.6\).
\(\Rightarrow\) \({(\mu ,\nu ,\omega )}\)-svnss P, Q and S satisfy the condition
(1) \(T^{\mu }_{S}(rm + sn) \ge T_{P}^{\mu }{(m)} \wedge T_{Q}^{\mu }(n)\), for all \(m, n\in M\) if and only if \(T^{\mu }_{rP+sQ} \le T^{\mu }_{S}\).
Similarly we can show for the other clauses i.e indeterminacy membership as well as falsity membership.
Theorem 3.23
Let P be a \({(\mu ,\nu ,\omega )}\)-svns on M and \(r, s \in R\). Then the following conditions must holds;
-
1.
\(T^{\mu }_{rP} \le T_{P}^{\mu }\) \(\Leftrightarrow\) \(T_{P}^{\mu }(rm) \ge T_{P}^{\mu }{(m)}\),
\(I_{rP}^{\nu } \le I_{P}^{\nu }\) \(\Leftrightarrow\) \(I_{P}^{\nu }(rm) \ge I_{P}^{\nu }{(m)}\) and
\(F_{rP}^{\omega } \ge F_{P}^{\omega }\) \(\Leftrightarrow\) \(F_{P}^{\omega }(rm) \le F_{P}^{\omega }{(m)}\), for each \(m\in M\).
-
2.
\(T_{rP+sP}^{\mu } \le T_{P}^{\mu } \Leftrightarrow T_{P}^{\mu }(rm + sn) \ge T_{P}^{\mu }{(m)} \wedge T_{P}^{\mu }(n)\),
\(I_{rP+sP}^{\nu } \le I_{P}^{\nu } \Leftrightarrow I_{P}^{\nu }(rm + sn) \ge I_{P}^{\nu }{(m)} \wedge I_{P}^{\nu }(n)\),
\(F_{rP+sP}^{\omega } \ge F_{P}^{\omega } \Leftrightarrow F_{P}^{\omega }(rm + sn) \le F_{P}^{\omega }{(m)} \vee F_{P}^{\omega }(n)\).
Proof
It is easy to prove with the help of Proposition 3.17 and 3.21. \(\square\)
Theorem 3.24
Let P be a \({(\mu ,\nu ,\omega )}\)-svns on M. Then P is a svnsm of M \(\Leftrightarrow\) P is a single-valued neutrosophic subgroup of the additive group M, in the notion of35, and meets the requirements \(T_{rP}^{\mu } \le T_{P}^{\mu }, ~I_{rP}^{\nu } \le I_{P}^{\nu }\) and \(F_{rP}^{\omega } \ge F_{P}^{\omega }\), for every \(r\in R\).
Proof
From the description of a single-valued neutrosophic subgroup in35 also using Theorem 3.23, it is easy to proof. \(\square\)
Theorem 3.25
Assume that P is a \((\mu ,\nu ,\omega )\)-svns on M. Then \(P \in svnsm(M)\) \(\Leftrightarrow\) the characteristic below are hold:
-
1.
\(P^{(\mu ,\nu ,\omega )}(0) = {{\tilde{X}}}\).
-
2.
\(P^{(\mu ,\nu ,\omega )}(rm + sn) \ge P^{(\mu ,\nu ,\omega )}{(m)} \wedge P^{(\mu ,\nu ,\omega )}(n)\), for every \(m, n \in M\), \(r, s \in R\).
Proof
Assume that P is a \({(\mu ,\nu ,\omega )}\)-svnsm of M and \(e, f \in M\). It is clearly shows that \(P^{(\mu ,\nu ,\omega )}(0) = {{\tilde{X}}}\) by using the condition (M1) of Definition 3.8. The foregoing statements are also correct based on (M2) and (M3).
Hence,
\(\Rightarrow ~~P^{(\mu ,\nu ,\omega )}(rm + sn) \ge P^{(\mu ,\nu ,\omega )}{(m)}\wedge P^{(\mu ,\nu ,\omega )}(n).\)
Conversely, assume \(P^{(\mu ,\nu ,\omega )}\) meets the conditions (i) and (ii). Therefore the assumption is evident that \(P^{(\mu ,\nu ,\omega )}(0) = {{\tilde{X}}}\).
So, \(P^{(\mu ,\nu ,\omega )}(m + n) \ge P^{(\mu ,\nu ,\omega )}(m) \wedge P^{(\mu ,\nu ,\omega )}(n).\)
Furthermore, the requirement (M2) of Definition 3.8 is fulfilled. Let us now demonstrate the condition’s legitimacy (M3). According to the hypothesis,
As a result, (M3) of Definition 3.8 is achieved. \(\square\)
Theorem 3.26
Assume P and Q are \({(\mu ,\nu ,\omega )}\)-svnsm of a classical module M, then \(P ~\cap ~ Q\) is also a \({(\mu ,\nu ,\omega )}\)-svnsm of M.
Proof
Since \(P, Q \in {(\mu ,\nu ,\omega )}\)-svnsm(M), we have \(P^{(\mu ,\nu ,\omega )}(0) = {{\tilde{X}}}\), and \(Q^{(\mu ,\nu ,\omega )}(0) = {{\tilde{X}}}\).
Hence \((P^{(\mu ,\nu ,\omega )}~\cap ~ Q^{(\mu ,\nu ,\omega )})(0) = {{\tilde{X}}}\) and we find that the condition (M1) of Definition 3.8 is met. Let \(m, n \in M, r, s \in R\). According to Theorem 3.25, it is sufficient to demonstrate that
That is,
Now consider the truth, indeterminacy and falsity membership degree of the intersection,
Hence, \(P ~\cap ~ Q \in (\mu ,\nu ,\omega )\)-svnsm(M). \(\square\)
Note: Let N be a nonempty subset of M is a submodule of M \(\Leftrightarrow\) \(rm + sn \in N,~ \forall ~m,~n \in M,~r,~s \in R\).
Proposition 3.27
Suppose M is a module over R. \(P \in {(\mu ,\nu ,\omega )}\)-svnsm(M) \(\Leftrightarrow\) \(\forall\) \(\alpha \in [0, 1]\), \(\alpha\)-level sets of \(P^{(\mu ,\nu ,\omega )}\), \((T_{P}^{\mu })_{\alpha }, ~(I_{P}^{\nu })_{\alpha }\) and \((F_{P}^{\omega })^{\alpha }\) are classical submodules of M where \(P^{(\mu ,\nu ,\omega )}(0) = {{\tilde{X}}}\).
Proof
Let \(P \in {(\mu ,\nu ,\omega )}\)-svnsm(M), \(\alpha \in [0, 1]\), \(m, n \in (T_{P}^{\mu })_{\alpha }\) and \(r, s \in R\) can represent a certain element. Then
By using Theorem 3.25, we have
Hence,
As a result, with each \(\alpha \in [0, 1]\), \((T_{P}^{\mu })_{\alpha }\) is a classical submodule of M. Similarly, for \(m, n \in (I_{P}^{\nu })_{\alpha }, ~(F_{P}^{\omega })^{\alpha }\) we obtain \(rm+sn \in (I_{P}^{\nu })_{\alpha }, ~(F_{P}^{\omega })^{\alpha }\) for each \(\alpha \in [0, 1]\). Consequently, \((I_{P}^{\nu })_{\alpha }, ~(F_{P}^{\omega })^{\alpha }\) with each \(\alpha \in [0, 1]\) are classical submodules of M.
Conversely, let \((T_{P}^{\mu })_{\alpha }\) with each \(\alpha \in [0, 1]\) be a classical submodules of M.
Let \(m, n \in M\), \(\alpha = T_{P}^{\mu }{(m)} \wedge T_{P}^{\mu }(n)\). Then \(T_{P}^{\mu }{(m)} = \alpha\) and \(T_{P}^{\mu }(n) = \alpha\). Thus, \(m, n \in (T_{P}^{\mu })_{\alpha }\).
Since \((T_{P}^{\mu })_{\alpha }\) is a classical submodule of M, so we have \(r m + s n \in (T_{P}^{\mu })_{\alpha }\) for all \(r, s \in R\).
Similarly, \((I_{P}^{\nu })_{\alpha }\) with each \(\alpha \in [0, 1]\) be a classical submodules of M.
Let \(m, n \in M\), \(\alpha = I_{P}^{\nu }{(m)} \wedge I_{P}^{\nu }(n)\). Then \(I_{P}^{\nu }{(m)} = \alpha\) and \(I_{P}^{\nu }(n) = \alpha\). Thus, \(m, n \in (I_{P}^{\nu })_{\alpha }\).
Since \((I_{P}^{\nu })_{\alpha }\) is a classical submodule of M, so we have \(r m + s n \in (I_{P}^{\nu })_{\alpha }\) for all \(r, s \in R\).
Now we consider \((F_{P}^{\omega })^{\alpha }\). Let \(m, n \in M\), \(\alpha = F_{P}^{\omega }{(m)}\vee F_{P}^{\omega }(n)\). Then \(F_{P}^{\omega }{(m)} = \alpha\), \(F_{P}^{\omega }(n) = \alpha\).
Thus \(m, n \in (F_{P}^{\omega })^{\alpha }\). Since \((F_{P}^{\omega })^{\alpha }\) is a submodule of M, we have \(rm + sn \in (F_{P}^{\omega })^{\alpha }\) for all \(r, s \in R\).
Thus \((F_{P}^{\omega })(rm + sn) \le \alpha = F_{P}^{\omega }{(m)} \vee F_{P}^{\omega }(n)\). It is also obvious that \(P^{(\mu ,\nu ,\omega )}(0) = {\tilde{X}}\).
As a result, the conditions of Theorem 3.25 are fulfilled. \(\square\)
Proposition 3.28
Assume that P and Q are two \((\mu ,\nu ,\omega )\)-svnss on X and Y, respectively. Then, for the \(\alpha\)- levels, the following equalities are hold.
Proof
Let \((m, n) \in (T_{P\times Q}^{\mu })_{\alpha }\) be arbitrary.
So,
Now Let \((m, n) \in (I_{P\times Q}^{\nu })_{\alpha }\) be arbitrary.
So,
Similarly \((m, n) \in (F_{P\times Q}^{\omega })^{\alpha }\) be arbitrary.
So,
\(\square\)
Proposition 3.29
Let P and Q be two \({(\mu ,\nu ,\omega )}\)-svnss on X and Y, respectively and \(g : X \rightarrow Y\) be a mapping. Therefore the preceding must be applicable:
-
1.
$$\begin{aligned} g((T_{P}^{\mu }))_{\alpha } \subseteq (T_{g(P)}^{\mu })_{\alpha }, \\ g((I_{P}^{\nu })_{\alpha }) \subseteq (I_{g(P)}^{\nu })_{\alpha }, \\ g((F_{P}^{\omega })^{\alpha })\supseteq (F_{g(P)}^{\omega })^{\alpha }. \end{aligned}$$
-
2.
$$\begin{aligned} g^{-1}((T_{Q}^{\mu })_{\alpha })= (T_{g^{-1}(Q)}^{\mu })_{\alpha }, \\ g^{-1}((I_{Q}^{\nu })_{\alpha }) = (I_{g^{-1}(Q)}^{\nu })_{\alpha }, \\ g^{-1}((F_{Q}^{\omega })^{\alpha })= (F_{g^{-1}(Q)}^{\omega })^{\alpha }. \end{aligned}$$
Proof
(1) Let \(n \in g((T_{P}^{\mu })_{\alpha })\). Then \(\exists\) \(m\in (T_{P}^{\mu })_{\alpha }\) such that \(g{(m)} = n\). Hence \(T_{P}^{\mu }{(m)} \ge \alpha\).
So, \(\bigvee \limits _{m\in g^{-1}(n)}^{} T_{P}^{\mu }{(m)} \ge \alpha\). That is, \(T_{g(P)}^{\mu }(n) \ge \alpha\) and \(n \in (T_{g(P)}^{\mu })_{\alpha }\). Hence \(g((T_{P}^{\mu })_{\alpha }) \subseteq (T_{g(P)}^{\mu })_{\alpha }\).
Similarly, \(n \in g((I_{P}^{\nu })_{\alpha })\). Then \(\exists\) \(m\in (I_{P}^{\nu })_{\alpha }\) such that \(g{(m)} = n\). Thus \(I_{P}^{\nu }{(m)} \ge \alpha\).
So, \(\bigvee \limits _{m\in g^{-1}(n)}^{} I_{P}^{\nu }{(m)} \ge \alpha\). That is, \(I_{g(P)}^{\nu }(n) \ge \alpha\) and \(n \in (I_{g(P)}^{\nu })_{\alpha }\). So \(g((I_{P}^{\nu })_{\alpha }) \subseteq (I_{g(P)}^{\nu })_{\alpha }\).
Also, \(n \in g((F_{P}^{\omega })^{\alpha })\). Then \(\exists\) \(m\in (F_{P}^{\omega })^{\alpha }\) such that \(g{(m)} = n\). This implies \(F_{P}^{\omega }{(m)} \le \alpha\).
So, \(\bigwedge \limits _{m\in g^{-1}(n)}^{} F_{P}^{\omega }{(m)} \le \alpha\). That is, \(F_{g(P)}^{\omega }(n) \le \alpha\) and \(n \in (F_{g(P)}^{\omega })^{\alpha }\). Hence \(g((F_{P}^{\omega })^{\alpha }) \supseteq (F_{g(P)}^{\omega })_{\alpha }\).
(2)
Similarly,
Also,
\(\square\)
Theorem 3.30
Let \(P, ~Q \in {(\mu ,\nu ,\omega )}\)-svnsm(M). Then the product \(P \times Q\) is also a \({(\mu ,\nu ,\omega )}\)-svnsm(M) of M.
Proof
We know that direct product of two submodule is a module. By using Proposition 3.27, suppose M is a module over R. \(P \in {(\mu ,\nu ,\omega )}\)-svnsm(M) \(\Leftrightarrow\) \(\forall\) \(\alpha \in [0, 1]\), \(\alpha\)-level sets of \(P^{(\mu ,\nu ,\omega )}\), \((T_{P}^{\mu })_{\alpha }, ~(I_{P}^{\nu })_{\alpha }\) and \((F_{P}^{\omega })^{\alpha }\) are classical submodules of M where \(P^{(\mu ,\nu ,\omega )}(0) = {{\tilde{X}}}\). Also by using Proposition 3.28, assume that P and Q are two \((\mu ,\nu ,\omega )\)-svnss on X and Y, respectively. Then, for the \(\alpha\)- levels, the following equalities are hold.
So, by combining these two result we get that \(P \times Q\) is a \({(\mu ,\nu ,\omega )}\)-svnsm(M) of M. \(\square\)
Theorem 3.31
Assume \(g : M \rightarrow N\) be a homomorphism of modules whereas M, N be the classical modules. If P is a \({(\mu ,\nu ,\omega )}\)-svnsm of M, then the image g(P) is a \({(\mu ,\nu ,\omega )}\)-svnsm of N.
Proof
It is sufficient to prove by Proposition 3.27,
are \({(\mu ,\nu ,\omega )}\)-svnsm of N, \(\forall\) \({\alpha } \in [0, 1]\).
Let \(n_{1}, n_{2} \in (T_{g(P)}^{\mu })_{\alpha }\). Then \(T_{g(P)}^{\mu }(n_{1}) \ge \alpha\) and \(T_{g(P)}^{\mu }(n_{2}) \ge \alpha\). There exist \(m_{1},~m_{2} \in M\) such that
So,
Since P is a \({(\mu ,\nu ,\omega )}\)-svnsm of M, for any \(r, s \in R\), we have
Hence,
Therefore, \((T_{g(P)}^{\mu })_{\alpha }\) is a submodule of N.
Similarly, \(\forall\) \(\alpha \in [0, 1]\), consider \(n_{1}, n_{2} \in (I_{g(P)}^{\nu })_{\alpha }\). Then \(I_{g(P)}^{\nu }(n_{1}) \ge \alpha\) and \(I_{g(P)}^{\nu }(n_{2}) \ge \alpha\). There exist \(m_{1},~m_{2} \in M\) such that
So
Since P is a \({(\mu ,\nu ,\omega )}\)-svnsm of M, for any \(r, s \in R\), we have
Hence,
Therefore, \((I_{g(P)}^{\nu })_{\alpha }\) is a submodule of N.
Similarly, for all \(\alpha \in [0, 1]\), consider \(n_{1}, n_{2} \in (n_{g(P)}^{\omega })^{\alpha }\). Then \(n_{g(P)}^{\omega }(n_{1}) \le \alpha\) and \(n_{g(P)}^{\omega }(n_{2}) \le \alpha\). There exist \(m_{1},~m_{2} \in M\) such that
and
So \(F_{P}^{\omega }(m_{1}) \le \alpha\), \(F_{P}^{\omega }(m_{2}) \le \alpha\) and \(F_{P}^{\omega }(m_{1}) \vee F_{P}^{\omega }(m_{2}) \le \alpha\). Since P is a \({(\mu ,\nu ,\omega )}\)-svnsm of M, for any \(r, s \in R\), we have \(F_{P}^{\omega }(rm_{1} + sm_{2}) \le F_{P}^{\omega }(m_{1}) \vee F_{P}^{\omega }(m_{2}) \le \alpha\).
Hence,
Therefore, \((F_{g(P)}^{\omega })^{\alpha }\) is a submodule of N. So, for every \(\alpha \in [0, 1]\), \((T_{g(P)}^{\mu })_{\alpha }\) \((I_{g(P)}^{\nu })_{\alpha }\), \((F_{g(P)}^{\omega })^{\alpha }\) are classical submodules of N. Thus g(P) is a \({(\mu ,\nu ,\omega )}\)-svnsm of N via the use of Proposition 3.27. \(\square\)
Theorem 3.32
Assume \(g : M \rightarrow N\) be a homomorphism of modules whereas M, N be the classical modules. If Q is a \({(\mu ,\nu ,\omega )}\)-svnsm of N, then the preimage \(g^{-1}(Q)\) is a \({(\mu ,\nu ,\omega )}\)-svnsm of M.
Proof
Using Proposition 3.29 (2), we have
Since preimage of a \({(\mu ,\nu ,\omega )}\)-svnsm is a \({(\mu ,\nu ,\omega )}\)-svnsm, by Proposition 3.27 we arrive at a conclusion. \(\square\)
Corollary 3.33
If \(g : M \rightarrow N\) is a surjective module homomorphism and \(\{P_{i} : i \in I\}\) is a family of \({(\mu ,\nu ,\omega )}\)-svnsm of M, then \(g(\cap P_{i})\) is a \({(\mu ,\nu ,\omega )}\)-svnsm of N.
Corollary 3.34
If \(g : M \rightarrow N\) is a homomorphism of modules and \(\{Q_{j} : j \in I\}\) is a family of \({(\mu ,\nu ,\omega )}\)-svnsm of N, then \(g^{-1}(~\cap ~ Q_{j})\) is a \({(\mu ,\nu ,\omega )}\)-svnsm of M.
Conclusions
A \((\mu ,\nu ,\omega )\)-svns is a type of svns that can be used to tackle real-world challenges in research, engineering, denoising, clustering, segmentation, and a range of medical image-processing applications. Therefore, the study of \((\mu ,\nu ,\omega )\)-svnss and their characteristics has a significant influence, both in terms of gaining an understanding of the fundamentals of vulnerability and the applications that can benefit from this knowledge. As a continuation of the research that was carried out in35,36,37,38, we intend to propose and investigate the idea of a \((\mu ,\nu ,\omega )\)-svnsm. In this article, we defined \((\mu ,\nu ,\omega )\)-svnm and \((\mu ,\nu ,\omega )\)-svnsm and offered a number of fundamental results that are connected to these ideas. As a consequence of this, the purpose of this study is to make use of a variety of different concepts in order to acquire some pertinent outcomes about \((\mu ,\nu ,\omega )\)-svnsm that are of significant worth in the field of research. In the realm of algebraic structure theory, it possesses a fantastic novel idea that has the potential to be utilized in the future for the solution of a variety of algebraic issues.
-
This approach is frequently extended to the generators of arbitrary nonempty families of neutrosophic submodules as well as structure maintaining features such as isomorphism of neutrosophic submodules. Neutrosophic submodules give a solid mathematical framework for clarifying related scientific issues in image processing, control theory, and economics.
-
This notion can be expanded to soft neutrosophic modules, weak soft neutrosophic modules, strong soft neutrosophic modules, soft neutrosophic module homomorphism, and soft neutrosophic module isomorphism. Furthermore, scholars might explore the homological properties of these modules.
-
This study can be broadened to include the cyclic fuzzy neutrosophic normal soft group, neutrosophic rings, and ideals.
-
In the future, researchers may extend this concept to topological spaces, fields, and vector spaces.
Data availability
The data used in the article are hypothetical, and can be used anyone by just citing this article and requests for materials should be addressed to Muhammad Shazib Hameed (shazib.hameed@kfueit.edu.pk).
References
Smarandache, F. A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability: neutrsophic logic. Neutrosophy, neutrosophic set, neutrosophic probability. Infinite Study (2005).
Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. Single valued neutrosophic sets. Infinite study (2010).
Jin, Y., Kamran, M., Salamat, N., Zeng, S., & Khan, R. H. Novel distance measures for single-valued neutrosophic fuzzy sets and their applications to multicriteria group decision-making problem. J. Funct. Spaces (2022).
Kumar, K. & Garg, H. TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 37(2), 1319–1329 (2018).
Rasheed, M. S. Investigation of solar cell factors using fuzzy set technique. Insight-Electron., 1(1). (2019)
Liu, Y. & Jiang, W. A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making. Soft. Comput. 24(9), 6987–7003 (2020).
Garg, H. & Kaur, G. Novel distance measures for cubic intuitionistic fuzzy sets and their applications to pattern recognitions and medical diagnosis. Granul. Comput. 5(2), 169–184 (2020).
Wu, B., Cheng, T., Yip, T. L. & Wang, Y. Fuzzy logic based dynamic decision-making system for intelligent navigation strategy within inland traffic separation schemes. Ocean Eng. 197, 106909 (2020).
Ali, M. N., Mahmoud, K., Lehtonen, M. & Darwish, M. M. An efficient fuzzy-logic based variable-step incremental conductance MPPT method for grid-connected PV systems. IEEE Access 9, 26420–26430 (2021).
Rasheed, M., & Sarhan, M. A. Characteristics of solar cell outdoor measurements using fuzzy logic method. Insight-Math., 1(1) (2019).
Murphy, M. P. The securitization audience in theologico-political perspective: Giorgio Agamben, doxological acclamations, and paraconsistent logic. Int. Relat. 34(1), 67–83 (2020).
Middelburg, C. A. A classical-logic view of a paraconsistent logic. arXiv preprint arXiv:2008.07292 (2020).
Rasuli, R. Fuzzy subgroups on direct product of groups over a t-norm. J. Fuzzy Set Val. Anal. 3, 96–101 (2017).
Ejegwa, P. A. & Otuwe, J. A. Frattini fuzzy subgroups of fuzzy groups. J. UniversPl Math. 2(2), 175–182 (2019).
Rasuli, R. Fuzzy subgroups over at-norm. J. Inf. Optim. Sci. 39(8), 1757–1765 (2018).
Capuano, N., Chiclana, F., Herrera-Viedma, E., Fujita, H. & Loia, V. Fuzzy group decision making for influence-aware recommendations. Comput. Hum. Behav. 101, 371–379 (2019).
Hu, B., Bi, L., Dai, S. & Li, S. The approximate parallelity of complex fuzzy sets. J. Intell. Fuzzy Syst. 35(6), 6343–6351 (2018).
Alolaiyan, H., Alshehri, H. A., Mateen, M. H., Pamucar, D. & Gulzar, M. A novel algebraic structure of \((\alpha,\beta )\)-complex fuzzy subgroups. Entropy 23(8), 992 (2021).
Yazdanbakhsh, O. & Dick, S. A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. 338, 1–22 (2018).
Akram, M. & Dudek, W. A. Intuitionistic fuzzy left k-ideals of semirings. Soft. Comput. 12(9), 881–890 (2008).
Kausar, N. Direct product of finite intuitionistic anti fuzzy normal subrings over non-associative rings. Eur. J. Pure Appl. Math. 12(2), 622–648 (2019).
Kausar, N., Islam, B. U., Javaid, M. Y., Ahmad, S. A. & Ijaz, U. Characterizations of non-associative rings by the properties of their fuzzy ideals. J. Taibah Univ. Sci. 13(1), 820–833 (2019).
Kellil, R. Sum and product of Fuzzy ideals of a ring. Int. J. Math. Comput. Sci. 13, 187–205 (2018).
Akram, M. On T-fuzzy ideals in nearrings. Int. J. Math. Math. Sci. (2007).
Çetkin, V. & Aygün, H. An approach to neutrosophic ideals. UniversPl J. Math. Appl. 1(2), 132–136 (2018).
Akram, M., Naz, S. & Smarandache, F. Generalization of maximizing deviation and TOPSIS method for MADM in simplified neutrosophic hesitant fuzzy environment. Symmetry 11(8), 1058 (2019).
Akram, M. Single-valued neutrosophic graphs. Springer, Singapore (2018).
Singh, P. K. Interval-valued neutrosophic graph representation of concept lattice and its \((\alpha ,\beta ,\gamma )\)-decomposition. Arab. J. Sci. Eng. 43(2), 723–740 (2018).
Singh, P. K. Three-way fuzzy concept lattice representation using neutrosophic set. Int. J. Mach. Learn. Cybern. 8(1), 69–79 (2017).
Akram, M., & Shum, K. P. A survey on single-valued neutrosophic K-algebras. Infinite Study (2020).
Akram, M., Gulzar, H., & Shum, K. P. Certain notions of single-valued neutrosophic K-algebras. Infinite Study (2018).
Deepak, D., Mathew, B., John, S. J. & Garg, H. A topological structure involving hesitant fuzzy sets. J. Intell. Fuzzy Syst. 36(6), 6401–6412 (2019).
Arockiarani, I. et al. Fuzzy neutrosophic soft topological spaces. Int. J. Math. Arch. 4(10), 225–238 (2013).
Li, Q. H. & Li, H. Y. Applications of fuzzy inclusion orders between L-subsets in fuzzy topological structures. J. Intell. Fuzzy Syst. 37(2), 2587–2596 (2019).
Çetkin, V. & Aygün, H. An approach to neutrosophic subgroup and its fundamental properties. J. Intell. Fuzzy Syst. 29(5), 1941–1947 (2015).
Çetkin, V. & Aygün, H. An approach to neutrosophic subrings. sPkarya iversitesi Fen Bilimleri Enstits Dergisi 23(3), 472–477 (2019).
Çetkin, V., Varol, B. P. & Aygün, H. On neutrosophic submodules of a module. Hacettepe J. Math. Stat. 46(5), 791–799 (2017).
Olgun, N. & Bal, M. Neutrosophic modules. Neutrosophic. Oper. Res. 2, 181–192 (2017).
Verma, R. Fuzzy MABAC method based on new exponential fuzzy information measures. Soft. Comput. 25(14), 9575–9589 (2021).
Zhao, M., Wei, G., Chen, X. & Wei, Y. Intuitionistic fuzzy MABAC method based on cumulative prospect theory for multiple attribute group decision making. Int. J. Intell. Syst. 36(11), 6337–6359 (2021).
Adem, A., Cakit, E. & Dagdeviren, M. A fuzzy decision-making approach to analyze the design principles for green ergonomics. Neural Comput. Appl. 34, 1373–1384 (2022).
Funding
The authors declare no extra funding support for this study.
Author information
Authors and Affiliations
Contributions
Conceptualization, M.S.H. Writing original draft preparation: M.S.H., M.K. Writing review and editing: A.R.L.B., Z.A.; Final version rechecking and grammatically correction, S.A. All authors have read and agreed to the published version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Hameed, M.S., Ahmad, Z., Ali, S. et al. An approach to \((\mu ,\nu ,\omega )\)-single-valued neutrosophic submodules. Sci Rep 13, 751 (2023). https://doi.org/10.1038/s41598-022-18500-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-022-18500-5