Table 2 LHPM solutions and errors for different \(\alpha\) when \({S}_{q}\) is negative i.e. \({S}_{q}=-1\), and \({M}_{g}=0.5\), \({M}_{p}=1.5\), \(\beta =0.05\).

From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method

\(\zeta\)

\(\alpha =3.3\)

\(\alpha =3.5\)

\(\alpha =3.7\)

\(\alpha =3.9\)

LHPM

Residual error

LHPM

Residual error

LHPM

Residual error

LHPM

Residual error

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.2\)

\(0.29610\)

\(6.1\times 1{0}^{-10}\)

\(0.29612\)

\(1.6\times 1{0}^{-10}\)

\(0.29612\)

\(3.6\times 1{0}^{-11}\)

\(0.29611\)

\(6.9\times 1{0}^{-12}\)

\(0.4\)

\(0.56812\)

\(1.2\times 1{0}^{-8}\)

\(0.56816\)

\(5.6\times 1{0}^{-9}\)

\(0.56817\)

\(2.0\times 1{0}^{-9}\)

\(0.56816\)

\(6.0\times 1{0}^{-10}\)

\(0.6\)

\(0.79206\)

\(3.6\times 1{0}^{-8}\)

\(0.79211\)

\(3.4\times 1{0}^{-8}\)

\(0.79213\)

\(1.8\times 1{0}^{-8}\)

\(0.79213\)

\(7.1\times 1{0}^{-9}\)

\(0.8\)

\(0.94400\)

\(3.7\times 1{0}^{-8}\)

\(0.94403\)

\(8.5\times 1{0}^{-8}\)

\(0.94404\)

\(6.7\times 1{0}^{-8}\)

\(0.94404\)

\(3.5\times 1{0}^{-8}\)

\(1.0\)

\(1.0\)

\(5.5\times 1{0}^{-7}\)

\(1.0\)

\(6.4\times 1{0}^{-8}\)

\(1.0\)

\(1.5\times 1{0}^{-7}\)

\(1.0\)

\(1.0\times 1{0}^{-7}\)