Table 2 LHPM solutions and errors for different \(\alpha\) when \({S}_{q}\) is negative i.e. \({S}_{q}=-1\), and \({M}_{g}=0.5\), \({M}_{p}=1.5\), \(\beta =0.05\).
From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method
\(\zeta\) | \(\alpha =3.3\) | \(\alpha =3.5\) | \(\alpha =3.7\) | \(\alpha =3.9\) | ||||
---|---|---|---|---|---|---|---|---|
LHPM | Residual error | LHPM | Residual error | LHPM | Residual error | LHPM | Residual error | |
\(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) |
\(0.2\) | \(0.29610\) | \(6.1\times 1{0}^{-10}\) | \(0.29612\) | \(1.6\times 1{0}^{-10}\) | \(0.29612\) | \(3.6\times 1{0}^{-11}\) | \(0.29611\) | \(6.9\times 1{0}^{-12}\) |
\(0.4\) | \(0.56812\) | \(1.2\times 1{0}^{-8}\) | \(0.56816\) | \(5.6\times 1{0}^{-9}\) | \(0.56817\) | \(2.0\times 1{0}^{-9}\) | \(0.56816\) | \(6.0\times 1{0}^{-10}\) |
\(0.6\) | \(0.79206\) | \(3.6\times 1{0}^{-8}\) | \(0.79211\) | \(3.4\times 1{0}^{-8}\) | \(0.79213\) | \(1.8\times 1{0}^{-8}\) | \(0.79213\) | \(7.1\times 1{0}^{-9}\) |
\(0.8\) | \(0.94400\) | \(3.7\times 1{0}^{-8}\) | \(0.94403\) | \(8.5\times 1{0}^{-8}\) | \(0.94404\) | \(6.7\times 1{0}^{-8}\) | \(0.94404\) | \(3.5\times 1{0}^{-8}\) |
\(1.0\) | \(1.0\) | \(5.5\times 1{0}^{-7}\) | \(1.0\) | \(6.4\times 1{0}^{-8}\) | \(1.0\) | \(1.5\times 1{0}^{-7}\) | \(1.0\) | \(1.0\times 1{0}^{-7}\) |