Table 3 LHPM solutions and errors for different \(\alpha\) when \({S}_{q}\) is positive i.e. \({S}_{q}=1\), and \({M}_{g}=0.5\), \({M}_{p}=1.5\), \(\beta =0.05\).

From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method

\(\zeta\)

\(\alpha =3.3\)

\(\alpha =3.5\)

\(\alpha =3.7\)

\(\alpha =3.9\)

LHPM

Residual error

LHPM

Residual error

LHPM

Residual error

LHPM

Residual error

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.0\)

\(0.2\)

\(0.29416\)

\(8.9\times 1{0}^{-10}\)

\(0.29441\)

\(1.1\times 1{0}^{-10}\)

\(0.29467\)

\(1.8\times 1{0}^{-13}\)

\(0.29492\)

\(2.6\times 1{0}^{-12}\)

\(0.4\)

\(0.56531\)

\(3.8\times 1{0}^{-8}\)

\(0.56565\)

\(7.4\times 1{0}^{-9}\)

\(0.56601\)

\(5.0\times 1{0}^{-10}\)

\(0.56636\)

\(1.8\times 1{0}^{-10}\)

\(0.6\)

\(0.78979\)

\(4.2\times 1{0}^{-7}\)

\(0.79004\)

\(1.1\times 1{0}^{-7}\)

\(0.79032\)

\(1.6\times 1{0}^{-8}\)

\(0.79059\)

\(3.1\times 1{0}^{-10}\)

\(0.8\)

\(0.94312\)

\(2.6\times 1{0}^{-6}\)

\(0.94321\)

\(8.0\times 1{0}^{-7}\)

\(0.94331\)

\(1.8\times 1{0}^{-7}\)

\(0.94341\)

\(2.3\times 1{0}^{-8}\)

\(1.0\)

\(1.0\)

\(1.1\times 1{0}^{-5}\)

\(1.0\)

\(4.0\times 1{0}^{-6}\)

\(1.0\)

\(1.2\times 1{0}^{-6}\)

\(1.0\)

\(2.6\times 1{0}^{-7}\)