Table 3 LHPM solutions and errors for different \(\alpha\) when \({S}_{q}\) is positive i.e. \({S}_{q}=1\), and \({M}_{g}=0.5\), \({M}_{p}=1.5\), \(\beta =0.05\).
From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method
\(\zeta\) | \(\alpha =3.3\) | \(\alpha =3.5\) | \(\alpha =3.7\) | \(\alpha =3.9\) | ||||
---|---|---|---|---|---|---|---|---|
LHPM | Residual error | LHPM | Residual error | LHPM | Residual error | LHPM | Residual error | |
\(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) | \(0.0\) |
\(0.2\) | \(0.29416\) | \(8.9\times 1{0}^{-10}\) | \(0.29441\) | \(1.1\times 1{0}^{-10}\) | \(0.29467\) | \(1.8\times 1{0}^{-13}\) | \(0.29492\) | \(2.6\times 1{0}^{-12}\) |
\(0.4\) | \(0.56531\) | \(3.8\times 1{0}^{-8}\) | \(0.56565\) | \(7.4\times 1{0}^{-9}\) | \(0.56601\) | \(5.0\times 1{0}^{-10}\) | \(0.56636\) | \(1.8\times 1{0}^{-10}\) |
\(0.6\) | \(0.78979\) | \(4.2\times 1{0}^{-7}\) | \(0.79004\) | \(1.1\times 1{0}^{-7}\) | \(0.79032\) | \(1.6\times 1{0}^{-8}\) | \(0.79059\) | \(3.1\times 1{0}^{-10}\) |
\(0.8\) | \(0.94312\) | \(2.6\times 1{0}^{-6}\) | \(0.94321\) | \(8.0\times 1{0}^{-7}\) | \(0.94331\) | \(1.8\times 1{0}^{-7}\) | \(0.94341\) | \(2.3\times 1{0}^{-8}\) |
\(1.0\) | \(1.0\) | \(1.1\times 1{0}^{-5}\) | \(1.0\) | \(4.0\times 1{0}^{-6}\) | \(1.0\) | \(1.2\times 1{0}^{-6}\) | \(1.0\) | \(2.6\times 1{0}^{-7}\) |