Table 4 Comparison of LHPM and HPM results in case of negative \({S}_{q}\) when \(\alpha =4.0\), \({M}_{g}={M}_{p}=0.5,\beta =0.05\).

From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method

Parameter

\(\eta\)

Solution

Residual error

HPM56

LHPM

HPM56

LHPM

\({S}_{q}=-0.2\)

\(0.1\)

\(0.14944\)

\(0.14944\)

\(9.93\times 1{0}^{-11}\)

\(4.35\times 1{0}^{-16}\)

\(0.3\)

\(0.43635\)

\(0.43635\)

\(5.16\times 1{0}^{-10}\)

\(9.73\times 1{0}^{-13}\)

\(0.5\)

\(0.68732\)

\(0.68732\)

\(5.33\times 1{0}^{-10}\)

\(3.56\times 1{0}^{-11}\)

\(0.7\)

\(0.87838\)

\(0.87838\)

\(1.53\times 1{0}^{-9}\)

\(3.82\times 1{0}^{-10}\)

\(0.9\)

\(0.98547\)

\(0.98547\)

\(1.17\times 1{0}^{-9}\)

\(2.25\times 1{0}^{-9}\)

\({S}_{q}=-0.6\)

\(0.1\)

\(0.14955\)

\(0.14955\)

\(1.24\times 1{0}^{-8}\)

\(3.06\times 1{0}^{-15}\)

\(0.3\)

\(0.43664\)

\(0.43664\)

\(3.79\times 1{0}^{-8}\)

\(5.95\times 1{0}^{-12}\)

\(0.5\)

\(0.68765\)

\(0.68765\)

\(7.21\times 1{0}^{-8}\)

\(1.78\times 1{0}^{-10}\)

\(0.7\)

\(0.87859\)

\(0.87859\)

\(1.42\times 1{0}^{-7}\)

\(1.47\times 1{0}^{-9}\)

\(0.9\)

\(0.98556\)

\(0.98551\)

\(3.01\times 1{0}^{-7}\)

\(6.26\times 1{0}^{-9}\)