Table 5 Comparison of LHPM and HPM results for different \(\beta\) when \(\alpha =4.0\), \({M}_{g}={M}_{p}=0.5,{S}_{q}=-0.2\).
From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method
Parameter | \(\eta\) | Solution | Residual error | ||
---|---|---|---|---|---|
HPM56 | LHPM | HPM56 | LHPM | ||
\(\beta =0.01\) | \(0.1\) | \(0.14948\) | \(0.14948\) | \(8.92\times 1{0}^{-13}\) | \(8.67\times 1{0}^{-19}\) |
\(0.3\) | \(0.43646\) | \(0.43646\) | \(4.63\times 1{0}^{-12}\) | \(1.82\times 1{0}^{-15}\) | |
\(0.5\) | \(0.68746\) | \(0.68746\) | \(4.79\times 1{0}^{-12}\) | \(6.67\times 1{0}^{-14}\) | |
\(0.7\) | \(0.87847\) | \(0.87847\) | \(1.37\times 1{0}^{-11}\) | \(7.17\times 1{0}^{-13}\) | |
\(0.9\) | \(0.98549\) | \(0.98549\) | \(1.05\times 1{0}^{-11}\) | \(4.21\times 1{0}^{-12}\) | |
\(\beta =0.2\) | \(0.1\) | \(0.14929\) | \(0.14929\) | \(4.25\times 1{0}^{-9}\) | \(6.47\times 1{0}^{-14}\) |
\(0.3\) | \(0.43597\) | \(0.43597\) | \(2.21\times 1{0}^{-8}\) | \(1.45\times 1{0}^{-10}\) | |
\(0.5\) | \(0.68690\) | \(0.68690\) | \(2.28\times 1{0}^{-8}\) | \(5.30\times 1{0}^{-9}\) | |
\(0.7\) | \(0.87810\) | \(0.87810\) | \(6.57\times 1{0}^{-8}\) | \(5.70\times 1{0}^{-8}\) | |
\(0.9\) | \(0.98542\) | \(0.98542\) | \(5.05\times 1{0}^{-8}\) | \(8.38\times 1{0}^{-7}\) |