Table 5 Comparison of LHPM and HPM results for different \(\beta\) when \(\alpha =4.0\), \({M}_{g}={M}_{p}=0.5,{S}_{q}=-0.2\).

From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method

Parameter

\(\eta\)

Solution

Residual error

HPM56

LHPM

HPM56

LHPM

\(\beta =0.01\)

\(0.1\)

\(0.14948\)

\(0.14948\)

\(8.92\times 1{0}^{-13}\)

\(8.67\times 1{0}^{-19}\)

\(0.3\)

\(0.43646\)

\(0.43646\)

\(4.63\times 1{0}^{-12}\)

\(1.82\times 1{0}^{-15}\)

\(0.5\)

\(0.68746\)

\(0.68746\)

\(4.79\times 1{0}^{-12}\)

\(6.67\times 1{0}^{-14}\)

\(0.7\)

\(0.87847\)

\(0.87847\)

\(1.37\times 1{0}^{-11}\)

\(7.17\times 1{0}^{-13}\)

\(0.9\)

\(0.98549\)

\(0.98549\)

\(1.05\times 1{0}^{-11}\)

\(4.21\times 1{0}^{-12}\)

\(\beta =0.2\)

\(0.1\)

\(0.14929\)

\(0.14929\)

\(4.25\times 1{0}^{-9}\)

\(6.47\times 1{0}^{-14}\)

\(0.3\)

\(0.43597\)

\(0.43597\)

\(2.21\times 1{0}^{-8}\)

\(1.45\times 1{0}^{-10}\)

\(0.5\)

\(0.68690\)

\(0.68690\)

\(2.28\times 1{0}^{-8}\)

\(5.30\times 1{0}^{-9}\)

\(0.7\)

\(0.87810\)

\(0.87810\)

\(6.57\times 1{0}^{-8}\)

\(5.70\times 1{0}^{-8}\)

\(0.9\)

\(0.98542\)

\(0.98542\)

\(5.05\times 1{0}^{-8}\)

\(8.38\times 1{0}^{-7}\)