Table 6 Comparison of LHPM and HPM results for different \({M}_{g}\) when \(\alpha =4.0\), \(\beta =0.05\), \({M}_{p}=0.5,{S}_{q}=-0.2\).

From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method

Parameter

\(\eta\)

Solution

Residual error

HPM56

LHPM

HPM56

LHPM

\({M}_{g}=0.1\)

\(0.1\)

\(0.14937\)

\(0.14948\)

\(3.30\times 1{0}^{-8}\)

\(3.12\times 1{0}^{-18}\)

\(0.3\)

\(0.43617\)

\(0.43646\)

\(8.69\times 1{0}^{-8}\)

\(1.87\times 1{0}^{-14}\)

\(0.5\)

\(0.68713\)

\(0.68746\)

\(1.08\times 1{0}^{-7}\)

\(1.22\times 1{0}^{-12}\)

\(0.7\)

\(0.87826\)

\(0.87847\)

\(8.46\times 1{0}^{-8}\)

\(1.86\times 1{0}^{-11}\)

\(0.9\)

\(0.98545\)

\(0.98549\)

\(9.68\times 1{0}^{-9}\)

\(1.36\times 1{0}^{-10}\)

\({M}_{g}=1.0\)

\(0.1\)

\(0.14926\)

\(0.14938\)

\(2.69\times 1{0}^{-7}\)

\(2.34\times 1{0}^{-15}\)

\(0.3\)

\(0.43591\)

\(0.43620\)

\(6.78\times 1{0}^{-7}\)

\(5.16\times 1{0}^{-12}\)

\(0.5\)

\(0.68683\)

\(0.68716\)

\(7.49\times 1{0}^{-7}\)

\(1.86\times 1{0}^{-10}\)

\(0.7\)

\(0.87807\)

\(0.87827\)

\(3.99\times 1{0}^{-7}\)

\(1.98\times 1{0}^{-9}\)

\(0.9\)

\(0.98542\)

\(0.98546\)

\(2.89\times 1{0}^{-7}\)

\(1.16\times 1{0}^{-8}\)