Table 6 Comparison of LHPM and HPM results for different \({M}_{g}\) when \(\alpha =4.0\), \(\beta =0.05\), \({M}_{p}=0.5,{S}_{q}=-0.2\).
From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method
Parameter | \(\eta\) | Solution | Residual error | ||
---|---|---|---|---|---|
HPM56 | LHPM | HPM56 | LHPM | ||
\({M}_{g}=0.1\) | \(0.1\) | \(0.14937\) | \(0.14948\) | \(3.30\times 1{0}^{-8}\) | \(3.12\times 1{0}^{-18}\) |
\(0.3\) | \(0.43617\) | \(0.43646\) | \(8.69\times 1{0}^{-8}\) | \(1.87\times 1{0}^{-14}\) | |
\(0.5\) | \(0.68713\) | \(0.68746\) | \(1.08\times 1{0}^{-7}\) | \(1.22\times 1{0}^{-12}\) | |
\(0.7\) | \(0.87826\) | \(0.87847\) | \(8.46\times 1{0}^{-8}\) | \(1.86\times 1{0}^{-11}\) | |
\(0.9\) | \(0.98545\) | \(0.98549\) | \(9.68\times 1{0}^{-9}\) | \(1.36\times 1{0}^{-10}\) | |
\({M}_{g}=1.0\) | \(0.1\) | \(0.14926\) | \(0.14938\) | \(2.69\times 1{0}^{-7}\) | \(2.34\times 1{0}^{-15}\) |
\(0.3\) | \(0.43591\) | \(0.43620\) | \(6.78\times 1{0}^{-7}\) | \(5.16\times 1{0}^{-12}\) | |
\(0.5\) | \(0.68683\) | \(0.68716\) | \(7.49\times 1{0}^{-7}\) | \(1.86\times 1{0}^{-10}\) | |
\(0.7\) | \(0.87807\) | \(0.87827\) | \(3.99\times 1{0}^{-7}\) | \(1.98\times 1{0}^{-9}\) | |
\(0.9\) | \(0.98542\) | \(0.98546\) | \(2.89\times 1{0}^{-7}\) | \(1.16\times 1{0}^{-8}\) |