Table 7 Comparison of LHPM and HPM results for different \({M}_{p}\) when \(\alpha =4.0\), \(\beta =0.05\), \({M}_{g}=0.5,{S}_{q}=-0.2\).

From: Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method

Parameter

\(\eta\)

Solution

Residual error

HPM56

LHPM

HPM56

LHPM

\({M}_{p}=1.0\)

\(0.1\)

\(0.14938\)

\(0.14938\)

\(2.87\times 1{0}^{-9}\)

\(2.34\times 1{0}^{-15}\)

\(0.3\)

\(0.43620\)

\(0.43620\)

\(2.56\times 1{0}^{-9}\)

\(5.16\times 1{0}^{-12}\)

\(0.5\)

\(0.68716\)

\(0.68716\)

\(6.02\times 1{0}^{-9}\)

\(1.86\times 1{0}^{-10}\)

\(0.7\)

\(0.87827\)

\(0.87827\)

\(6.00\times 1{0}^{-9}\)

\(1.98\times 1{0}^{-9}\)

\(0.9\)

\(0.98546\)

\(0.98546\)

\(1.14\times 1{0}^{-8}\)

\(1.16\times 1{0}^{-8}\)

\({M}_{p}=1.7\)

\(0.1\)

\(0.14930\)

\(0.14930\)

\(4.79\times 1{0}^{-8}\)

\(1.02\times 1{0}^{-14}\)

\(0.3\)

\(0.43599\)

\(0.43599\)

\(8.64\times 1{0}^{-8}\)

\(2.24\times 1{0}^{-11}\)

\(0.5\)

\(0.68692\)

\(0.68692\)

\(1.60\times 1{0}^{-10}\)

\(8.05\times 1{0}^{-10}\)

\(0.7\)

\(0.87812\)

\(0.87812\)

\(7.43\times 1{0}^{-8}\)

\(8.54\times 1{0}^{-9}\)

\(0.9\)

\(0.98543\)

\(0.98543\)

\(3.80\times 1{0}^{-9}\)

\(4.99\times 1{0}^{-8}\)