Table 2 Performance metrics of the DL models on the datasets.
Model | AUROC | F1-score | PPV | NPV | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Tabular data models | ||||||
AdaBoost | 0.738 ± 0.051 | 0.736 ± 0.024 | 0.734 ± 0.024 | 0.790 ± 0.019 | 0.746 ± 0.022 | 0.867 ± 0.019 |
Logistic regression | 0.772 ± 0.031 | 0.731 ± 0.039 | 0.728 ± 0.040 | 0.789 ± 0.027 | 0.740 ± 0.036 | 0.856 ± 0.030 |
MLP | 0.739 ± 0.024 | 0.730 ± 0.010 | 0.727 ± 0.011 | 0.794 ± 0.013 | 0.736 ± 0.007 | 0.840 ± 0.011 |
RandomForest | 0.769 ± 0.031 | 0.725 ± 0.027 | 0.730 ± 0.027 | 0.772 ± 0.020 | 0.746 ± 0.021 | 0.902 ± 0.016 |
XGBoost | 0.729 ± 0.039 | 0.705 ± 0.015 | 0.701 ± 0.016 | 0.775 ± 0.014 | 0.713 ± 0.011 | 0.829 ± 0.006 |
SVC | 0.732 ± 0.023 | 0.587 ± 0.003 | 0.727 ± 0.112 | 0.700 ± 0.001 | 0.697 ± 0.010 | 0.988 ± 0.021 |
Image data models | ||||||
Inception femur | 0.485 ± 0.019 | 0.605 ± 0.015 | 0.596 ± 0.017 | 0.703 ± 0.006 | 0.668 ± 0.003 | 0.908 ± 0.022 |
Inception head | 0.492 ± 0.036 | 0.584 ± 0.028 | 0.570 ± 0.043 | 0.693 ± 0.013 | 0.655 ± 0.036 | 0.904 ± 0.052 |
Inception abdomen | 0.487 ± 0.034 | 0.584 ± 0.017 | 0.563 ± 0.025 | 0.692 ± 0.009 | 0.645 ± 0.015 | 0.883 ± 0.011 |
Xception femur | 0.505 ± 0.075 | 0.597 ± 0.035 | 0.573 ± 0.053 | 0.700 ± 0.016 | 0.653 ± 0.011 | 0.881 ± 0.039 |
Xception Head | 0.460 ± 0.038 | 0.578 ± 0.017 | 0.559 ± 0.017 | 0.689 ± 0.010 | 0.629 ± 0.039 | 0.849 ± 0.082 |
Xception Abdomen | 0.514 ± 0.015 | 0.589 ± 0.019 | 0.576 ± 0.023 | 0.698 ± 0.006 | 0.673 ± 0.011 | 0.904 ± 0.032 |
ResNet50 femur | 0.492 ± 0.077 | 0.575 ± 0.007 | 0.514 ± 0.052 | 0.697 ± 0.002 | 0.693 ± 0.005 | 0.991 ± 0.015 |
ResNet50 head | 0.548 ± 0.046 | 0.586 ± 0.014 | 0.680 ± 0.103 | 0.700 ± 0.005 | 0.698 ± 0.006 | 0.991 ± 0.008 |
ResNet50 abdomen | 0.513 ± 0.062 | 0.571 ± 0.002 | 0.485 ± 0.003 | 0.696 ± 0.002 | 0.694 ± 0.003 | 0.996 ± 0.003 |