Table 3 Performance metrics of the best tabular, image model and ensemble models using majority voting and average strategies. The results are the averages and standard deviations of the threefold validation.
Model | AUROC | F1-score | PPV | NPV | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Tabular data model (AdaBoost) | 0.738 ± 0.051 | 0.736 ± 0.024 | 0.734 ± 0.024 | 0.790 ± 0.019 | 0.746 ± 0.022 | 0.867 ± 0.019 |
Image model (Inception femur) | 0.485 ± 0.019 | 0.605 ± 0.015 | 0.596 ± 0.017 | 0.703 ± 0.006 | 0.668 ± 0.003 | 0.908 ± 0.022 |
Image-based model (Inception femur, abdomen and head) Max voting | 0.470 ± 0.016 | 0.576 ± 0.016 | 0.572 ± 0.010 | 0.693 ± 0.007 | 0.582 ± 0.023 | 0.718 ± 0.040 |
Image-based model (Inception femur, abdomen and head) Mean voting | 0.477 ± 0.001 | 0.578 ± 0.006 | 0.587 ± 0.087 | 0.698 ± 0.001 | 0.694 ± 0.003 | 0.991 ± 0.003 |
AdaBoost + Inception femur, abdomen and head Max voting | 0.621 ± 0.053 | 0.638 ± 0.043 | 0.679 ± 0.036 | 0.792 ± 0.033 | 0.624 ± 0.045 | 0.623 ± 0.047 |
AdaBoost + Inception femur, abdomen and head Mean voting | 0.500 ± 0.001 | 0.578 ± 0.006 | 0.587 ± 0.087 | 0.698 ± 0.001 | 0.694 ± 0.003 | 0.991 ± 0.003 |
Final classification model (AdaBoost + Inception femur) Max voting | 0.705 ± 0.049 | 0.716 ± 0.028 | 0.719 ± 0.027 | 0.802 ± 0.018 | 0.714 ± 0.029 | 0.783 ± 0.024 |
Final classification model (AdaBoost + Inception femur) Mean voting | 0.522 ± 0.016 | 0.608 ± 0.012 | 0.606 ± 0.011 | 0.705 ± 0.005 | 0.677 ± 0.004 | 0.924 ± 0.022 |