Table 1 Difference among different GDioFSs.

From: Various distance between generalized Diophantine fuzzy sets using multiple criteria decision making and their real life applications

\(\hbox {GDioFS}_{(1,1)}(DioFS)\)

\(\hbox {GDioFS}_{(2,2)}(DioPFS)\)

\(\hbox {GDioFS}_{(2,3)}\)

\((\zeta \cdot \varrho )+(\xi \cdot \sigma )\le 1\)

\((\zeta \cdot \varrho )+(\xi \cdot \sigma )\le 1\) or \((\zeta \cdot \varrho )+(\xi \cdot \sigma )\ge 1\)

\((\zeta \cdot \varrho )+(\xi \cdot \sigma )\le 1\) or \((\zeta \cdot \varrho )+(\xi \cdot \sigma )\ge 1\)

\(0\le (\zeta \cdot \varrho )+(\xi \cdot \sigma )\le 1\)

\(0\le (\zeta \cdot \varrho )^2+(\xi \cdot \sigma )^2\le 1\)

\(0\le (\zeta \cdot \varrho )^m+(\xi \cdot \sigma )^p\le 1\)

\(\pi =1-((\zeta \cdot \varrho )+(\xi \cdot \sigma ))\)

\(\pi =\sqrt{1-((\zeta \cdot \varrho )^2+(\xi \cdot \sigma )^2)}\)

\(\pi =\root lcm(m,p) \of {1-((\zeta \cdot \varrho )^m+(\xi \cdot \sigma )^p)}\)

\(\pi +(\zeta \cdot \varrho )+(\xi \cdot \sigma )=1\)

\(\pi ^2+(\zeta \cdot \varrho )^2+(\xi \cdot \sigma )^2=1\)

\(\pi ^{lcm(m,p)}+(\zeta \cdot \varrho )^m+(\xi \cdot \sigma )^p=1\)