Table 9 Max–min–max composition of GFRs \({\mathcal {Q}}\) and \({\mathcal {R}}\), denoted by \({\mathcal {R}}\circ {\mathcal {Q}}\), and defined in Equation  3.13.

From: Various distance between generalized Diophantine fuzzy sets using multiple criteria decision making and their real life applications

\({\mathcal {R}}\circ {\mathcal {Q}}\) 40

College-1

College-2

College-3

College-4

College-5

Types

\({\mathcal {F}}1\)

0.695

0.7975

0.7975

0.7975

0.7499

\(GFS_{(2,2)}\)

0.6637

0.7937

0.7937

0.7937

0.7318

\(GFS_{(3,3)}\)

\({\mathcal {F}}2\)

0.7383

0.7692

0.8184

0.7692

0.7692

\(GFS_{(2,2)}\)

0.7471

0.7998

0.8499

0.7998

0.7998

\(GFS_{(3,3)}\)

\({\mathcal {F}}3\)

0.6979

0.7891

0.7449

0.7449

0.7692

\(GFS_{(2,2)}\)

0.6903

0.85

0.8516

0.8516

0.7998

\(GFS_{(3,3)}\)

\({\mathcal {F}}4\)

0.6865

0.7449

0.837

0.659

0.6883

\(GFS_{(2,2)}\)

0.6976

0.8516

0.9003

0.9343

0.8017

\(GFS_{(3,3)}\)

\({\mathcal {F}}5\)

0.7383

0.7891

0.8184

0.8184

0.7692

\(GFS_{(2,2)}\)

0.7471

0.85

0.8499

0.8499

0.7998

\(GFS_{(3,3)}\)