Table 4 The correlation coefficient matrix.

From: Statistical analysis of topological indices in linear phenylenes for predicting physicochemical properties using algorithms

 

BP

E

\(E_\pi \)

MW

GE

LogP

MR

HL

\(M^{mev}\)

\(R^{mev}\)

\({M}^{\beta mve}_1\)

\(M^{\beta mve}_1\)

\(M^{\beta mve}_2\)

\(ABC^{mve}\)

\(GA^{mve}\)

\(H^{mve}\)

\({\chi }^{mve}\)

BP

1

0.957

0.995

0.993

0.981

0.965

0.996

0.985

0.965

0.995

0.821

0.933

0.808

0.992

0.995

0.914

0.988

E

 

1

0.951

0.960

0.897

0.968

0.957

0.907

0.867

0.957

0.656

0.814

0.640

0.970

0.945

0.951

0.976

\(E_\pi \)

  

1

0.997

0.986

0.961

1.000

0.990

0.972

1.000

0.832

0.942

0.821

0.996

0.999

0.915

0.992

MW

   

1

0.973

0.966

0.998

0.979

0.956

0.998

0.797

0.919

0.785

0.998

0.995

0.931

0.996

GE

    

1

0.923

0.982

1.000

0.997

0.981

0.909

0.982

0.901

0.966

0.990

0.842

0.957

LogP

     

1

0.964

0.930

0.894

0.964

0.701

0.845

0.685

0.971

0.958

0.922

0.973

MR

      

1

0.987

0.967

1.000

0.821

0.934

0.809

0.997

0.998

0.921

0.994

HL

       

1

0.995

0.986

0.900

0.978

0.891

0.972

0.993

0.854

0.963

\(M^{mev}\)

        

1

0.966

0.939

0.994

0.931

0.947

0.978

0.809

0.934

\(R^{mev}\)

         

1

0.819

0.933

0.807

0.998

0.998

0.923

0.995

\({M}^{\beta mve}_1\)

          

1

0.970

0.999

0.779

0.846

0.576

0.756

\(M^{\beta mve}_1\)

           

1

0.965

0.907

0.949

0.749

0.891

\(M^{\beta mve}_2\)

            

1

0.765

0.835

0.561

0.743

\(ABC^{mve}\)

             

1

0.992

0.943

0.999

\(GA^{mve}\)

              

1

0.902

0.987

\(H^{mve}\)

               

1

0.951

\({\chi }^{mve}\)

                

1