Table 1 Machine learning algorithms applied in salivary spectra to discriminate between vehicle and CHIKV mice.

From: Salivary detection of Chikungunya virus infection using a portable and sustainable biophotonic platform coupled with artificial intelligence algorithms

Pre-Processing

Algorithm

Accuracy

Sensitivity

Specificity

Raw data

(3050–2800

1800—900 cm-1)

Linear discriminant analysis

0.48

0.33

0.62

Support vector machine

0.51

0.5

0.52

Amide I norm

(3050–2800

1800—900 cm-1)

Linear discriminant analysis

0.51

0.5

0.52

Support vector machine

0.49

0.33

0.62

Savitzky-Golay

(3050–2800

1800—900 cm-1)

Linear discriminant analysis

0.72

0.56

0.86

Support Vector Machine

0.85

0.83

0.86

Poly + Amide I

(3050–2800

1800—900 cm-1)

Linear Discriminant Analysis

0.59

0.5

0.67

Support Vector Machine

0.67

0.5

0.66

Als + Amide I

(3050–2800

1800—900 cm-1)

Linear Discriminant Analysis

0.79

0.72

0.86

Support Vector Machine

0.72

0.61

0.81

Rubberband + Amide 1

(3050–2800

1800—900 cm-1)

Linear Discriminant Analysis

0.48

0.55

0.43

Support Vector Machine

0.56

0.55

0.57

  1. *Als asymmetric least squares.
  2. Signifivants values are in bold.