Table 6 Comparison with the State-of-the-art on the DB1 and DB9 datasets.

From: Hand gesture recognition using sEMG signals with a multi-stream time-varying feature enhancement approach

Method

Year

DB1

DB9

Accuracy

Precision

Recall

F1-Score

Accuracy

Precision

Recall

F1-score

LS-SVM

(IAV+MAV+RMS+WL)1

2021

85.19

-

-

-

-

-

-

-

LDA (IAV(or MAV)+ CC)1

2021

84.23

-

-

-

-

-

-

-

RF2

2019

75.32

-

-

-

-

-

-

-

RNN with weight loss40

2018

79.30

-

-

-

-

-

-

-

LSTM+MLP41

2018

75.45

-

-

-

-

-

-

-

Attention-based

hybrid CNN-RNN11

2018

87.00

-

-

-

-

-

-

-

RCNN42

2022

87.34

-

-

-

-

-

-

-

CFF-RCNN42

2022

88.87

-

-

-

-

-

-

-

Proposed Model

-

94.31

95.60

94.31

94.08

98.96

98.50

98.96

98.60