Table 2 Quantitative evaluation of the KITTI dataset with various monocular depth estimation methods.

From: LapUNet: a novel approach to monocular depth estimation using dynamic laplacian residual U-shape networks

Method

RMSE

RMSLE

Abs Rel

Sq Rel

δ < 1.25

δ < 1.252

δ < 1.253

Low is better

High is better

Eigen et al.5

7.156

0.270

0.190

1.515

0.692

0.899

0.967

Kuznietsov et al.10

3.610

0.138

0.113

0.478

0.906

0.980

0.995

Godard et al.44

4.630

0.193

0.106

0.806

0.876

0.958

0.980

Gan et al.45

3.933

0.173

0.098

–

0.890

0.964

0.985

Xu et al.46

3.842

0.185

0.092

–

0.895

0.974

0.990

Bae et al.33

3.457

0.113

0.071

0.436

0.939

0.987

0.996

Gonzalez Bello et al.36

2.988

0.107

0.070

0.285

0.946

0.991

0.998

Wang et al.47

2.896

0.097

0.058

0.286

0.959

0.992

0.998

Fu et al.29

2.727

0.120

0.072

0.307

0.932

0.984

0.995

Lee et al. 48

2.756

0.096

0.059

0.241

0.956

0.993

0.998

Song et al.30

2.446

0.091

0.059

0.212

0.962

0.993

0.999

Ours

2.247

0.085

0.055

0.200

0.964

0.994

0.999