Table 2 Quantitative evaluation of the KITTI dataset with various monocular depth estimation methods.
Method | RMSE | RMSLE | Abs Rel | Sq Rel | δ < 1.25 | δ < 1.252 | δ < 1.253 |
---|---|---|---|---|---|---|---|
Low is better | High is better | ||||||
Eigen et al.5 | 7.156 | 0.270 | 0.190 | 1.515 | 0.692 | 0.899 | 0.967 |
Kuznietsov et al.10 | 3.610 | 0.138 | 0.113 | 0.478 | 0.906 | 0.980 | 0.995 |
Godard et al.44 | 4.630 | 0.193 | 0.106 | 0.806 | 0.876 | 0.958 | 0.980 |
Gan et al.45 | 3.933 | 0.173 | 0.098 | – | 0.890 | 0.964 | 0.985 |
Xu et al.46 | 3.842 | 0.185 | 0.092 | – | 0.895 | 0.974 | 0.990 |
Bae et al.33 | 3.457 | 0.113 | 0.071 | 0.436 | 0.939 | 0.987 | 0.996 |
Gonzalez Bello et al.36 | 2.988 | 0.107 | 0.070 | 0.285 | 0.946 | 0.991 | 0.998 |
Wang et al.47 | 2.896 | 0.097 | 0.058 | 0.286 | 0.959 | 0.992 | 0.998 |
Fu et al.29 | 2.727 | 0.120 | 0.072 | 0.307 | 0.932 | 0.984 | 0.995 |
Lee et al. 48 | 2.756 | 0.096 | 0.059 | 0.241 | 0.956 | 0.993 | 0.998 |
Song et al.30 | 2.446 | 0.091 | 0.059 | 0.212 | 0.962 | 0.993 | 0.999 |
Ours | 2.247 | 0.085 | 0.055 | 0.200 | 0.964 | 0.994 | 0.999 |