Table 4 Results of different models on the QaTa-COV19-v2 dataset.

From: Multi-scale input layers and dense decoder aggregation network for COVID-19 lesion segmentation from CT scans

Method

Dice

Mcc

Jaccard

Params (M)

FPS (ms)

U-Net2

0.8293

0.8099

0.7144

1.9447

247.7885

Attention-U-Net38

0.8344

0.8150

0.7197

34.8786

141.8865

DCANet39

0.8387

0.8229

0.7303

36.6003

34.4124

M-Net40

0.8366

0.8203

0.7289

9.3277

191.6864

DCSAU-Net41

0.8354

0.8166

0.7237

2.5988

56.7778

MCDAU-Net42

0.8339

0.8153

0.7228

12.9797

66.9488

META-Unet43

0.8379

0.8193

0.7251

21.6960

90.1669

MSRAformer44

0.7843

0.7628

0.6538

68.0315

23.1379

Swin-Transformer45

0.7900

0.7658

0.6578

36.7198

60.9945

MCAFNet46

0.8397

0.8211

0.7284

9.0615

81.2885

MDUNet47

0.8399

0.8213

0.7279

11.5519

38.2567

DualA-Net48

0.8282

0.8083

0.7111

2.5788

53.3254

MD-Net

0.8395

0.8232

0.7311

8.5747

75.0257