Table 10 Comparison results of Accuracy, Recall, Precision and F1-score of various methods with noise (SNR = 4 dB) (SEU dataset).
Model | Accuracy (%) | Recall (%) | Precision (%) | F1-score (%) |
---|---|---|---|---|
Resnet18-1d(2016) | 44.85 | 59.80 | 57.84 | 56.27 |
WDCNN(2017) | 54.41 | 67.65 | 64.22 | 63.53 |
QCNN(2022) | 78.92 | 77.45 | 74.51 | 74.73 |
WKNet1_Inception(2022) | 75.74 | 84.38 | 80.21 | 81.67 |
MRA-CNN(2022) | 59.31 | 58.82 | 60.78 | 57.28 |
MFRANet | 79.90 | 93.75 | 89.58 | 90.62 |