Table 1 Performance comparison in terms of mAP (%) between our proposed method and the state-of-the-art algorithms on CLD dataset, NEU steel surface defect dataset, and PKU-Market-PCB dataset, where PvTv2 means PVTv2-B2-Li. Except FPFM, We re-implemented baselines on three databases.

From: Sparse cross-transformer network for surface defect detection

Method

Backbone

CLD dataset

  

1-shot

2-shot

3-shot

5-shot

10-shot

30-shot

MetaRCNN

ResNet101

10.86

18.25

23.21

27.55

31.73

52.42

TFA

ResNet101

12.97

15.70

19.50

26.47

31.89

51.73

FSCE

ResNet101

15.28

21.32

23.00

29.37

34.19

52.61

AttentionRPN

ResNet50

16.34

22.50

23.69

25.97

31.49

49.86

FSDetView

ResNet101

14.11

21.90

22.80

25.56

30.87

47.90

MPSR

ResNet101

21.26

27.63

30.37

38.76

42.8

55.91

QA-FewDet

ResNet101

16.57

22.24

25.68

31.28

37.19

51.64

DeFRCN

ResNet101

18.22

26.81

32.60

39.73

46.26

58.23

FCT

PvTv2

25.16

28.64

32.34

40.32

45.62

59.81

Ours

PvTv2

26.53

31.92

34.98

41.9

47.21

62.73

Method

Backbone

NEU steel surface defect dataset

  

1-shot

2-shot

3-shot

5-shot

10-shot

30-shot

MetaRCNN

ResNet101

12.21

18.07

26.3

43.12

52.06

66.17

TFA

ResNet101

11.93

14.99

26.92

45.47

52.31

65.67

FSCE

ResNet101

16.19

26.97

33.87

46.17

60.13

72.08

AttentionRPN

ResNet50

18.83

26.33

32.18

47.07

62.53

73.81

FSDetView

ResNet101

16.12

21.08

31.37

43.19

64.28

75.97

MPSR

ResNet101

19.49

25.99

39.76

49.53

66.87

78.29

QA-FewDet

ResNet101

15.91

18.09

32.19

43.37

62.12

74.01

DeFRCN

ResNet101

21.06

26.20

39.93

48.95

67.37

80.46

FCT

PvTv2

29.07

33.18

43.71

56.64

70.16

83.58

Ours

PvTv2

29.81

35.26

46.49

58.94

72.18

85.29

Method

Backbone

PKU-Market-PCB dataset

  

1-shot

2-shot

3-shot

5-shot

10-shot

30-shot

MetaRCNN

ResNet101

8.74

14.53

21.85

44.78

57.83

69.34

TFA

ResNet101

10.21

14.68

22.72

43.69

55.18

68.51

FSCE

ResNet101

17.58

28.16

36.52

43.98

63.41

75.50

AttentionRPN

ResNet50

19.05

24.83

31.61

50.29

65.47

76.50

FSDetView

ResNet101

11.92

18.12

30.94

40.52

62.19

73.41

MPSR

ResNet101

12.59

17.25

28.32

45.76

59.45

71.86

QA-FewDet

ResNet101

13.20

20.40

32.30

49.80

63.9

75.97

DeFRCN

ResNet101

18.70

26.10

39.50

45.10

68.20

83.28

FCT

PvTv2

26.29

30.21

42.95

55.32

69.86

82.60

FPFM

-

16.26

22.07

39.36

49.81

69.52

78.86

Ours

PvTv2

28.20

36.80

48.30

59.10

73.60

88.70

  1. The best are in bold.