Table 2 Performance comparison in terms of mAP (%), F1, precision (%), and recall (%) between our proposed method and the state-of-the-art algorithms on CLD dataset in the 30-shot scenario.

From: Sparse cross-transformer network for surface defect detection

Method

Backbone

Metric

mAP of each class

  

mAP

F1

Precision

Recall

Scratch

Sand hole

Wear

MetaRCNN

ResNet101

52.42

0.6648

61.52

72.31

60.81

45.63

50.82

TFA

ResNet101

51.73

0.6501

72.05

59.22

58.27

45.89

51.03

FSCE

ResNet101

52.61

0.6829

62.56

75.18

58.93

52.16

46.74

AttentionRPN

ResNet50

49.86

0.5982

65.39

55.13

50.14

40.92

58.52

FSDetView

ResNet101

47.90

0.7211

65.82

79.74

52.17

42.83

48.70

MPSR

ResNet101

55.91

0.7054

61.63

82.46

52.37

51.53

63.83

QA-FewDet

ResNet101

51.64

0.7378

76.28

71.43

56.74

49.27

48.91

DeFRCN

ResNet101

58.23

0.7375

69.82

78.15

57.39

56.08

61.22

FCT

PvTv2

59.81

0.7889

75.06

83.13

60.11

56.62

62.7

Ours

PvTv2

62.73

0.8057

76.38

85.24

65.06

59.88

63.25