Table 3 Performance comparison in terms of mAP (%), F1, precision (%), and recall (%) between our proposed method and the state-of-the-art algorithms on NEU steel surface defect dataset in the 30-shot scenario.
From: Sparse cross-transformer network for surface defect detection
Method | Backbone | Metric | mAP of each class | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mAP | F1 | Precision | Recall | Cr | In | Pa | Ps | Rs | Sc | ||
MetaRCNN | ResNet101 | 66.17 | 0.7086 | 70.64 | 71.09 | 61.53 | 61.53 | 74.19 | 73.24 | 60.17 | 62.8 |
TFA | ResNet101 | 65.67 | 0.715 | 76.25 | 67.31 | 62.47 | 76.83 | 71.21 | 63.17 | 58.79 | 61.55 |
FSCE | ResNet101 | 72.08 | 0.7289 | 65.44 | 82.26 | 63.39 | 75.13 | 68.57 | 78.38 | 76.08 | 70.93 |
AttentionRPN | ResNet50 | 73.81 | 0.6776 | 72.53 | 63.58 | 52.73 | 79.28 | 75.06 | 74.41 | 71.68 | 89.7 |
FSDetView | ResNet101 | 75.97 | 0.7539 | 71.04 | 80.31 | 73.18 | 82.59 | 63.95 | 78.67 | 84.2 | 73.23 |
MPSR | ResNet101 | 78.29 | 0.7654 | 68.22 | 87.18 | 75.31 | 80.29 | 65.89 | 86.19 | 79.16 | 82.9 |
QA-FewDet | ResNet101 | 74.01 | 0.7684 | 75.21 | 78.54 | 70.14 | 79.59 | 65.77 | 79.97 | 68.52 | 80.07 |
DeFRCN | ResNet101 | 80.46 | 0.7824 | 76.25 | 80.33 | 76.38 | 82.57 | 88.72 | 81.63 | 89.46 | 80.92 |
FCT | PvTv2 | 83.58 | 0.8381 | 80.71 | 87.16 | 81.41 | 82.05 | 83.73 | 82.5 | 89.74 | 76.17 |
Ours | PvTv2 | 85.29 | 0.8788 | 85.62 | 90.27 | 86.52 | 89.47 | 90.9 | 88.95 | 90.28 | 86.08 |