Table 3 Performance comparison in terms of mAP (%), F1, precision (%), and recall (%) between our proposed method and the state-of-the-art algorithms on NEU steel surface defect dataset in the 30-shot scenario.

From: Sparse cross-transformer network for surface defect detection

Method

Backbone

Metric

mAP of each class

  

mAP

F1

Precision

Recall

Cr

In

Pa

Ps

Rs

Sc

MetaRCNN

ResNet101

66.17

0.7086

70.64

71.09

61.53

61.53

74.19

73.24

60.17

62.8

TFA

ResNet101

65.67

0.715

76.25

67.31

62.47

76.83

71.21

63.17

58.79

61.55

FSCE

ResNet101

72.08

0.7289

65.44

82.26

63.39

75.13

68.57

78.38

76.08

70.93

AttentionRPN

ResNet50

73.81

0.6776

72.53

63.58

52.73

79.28

75.06

74.41

71.68

89.7

FSDetView

ResNet101

75.97

0.7539

71.04

80.31

73.18

82.59

63.95

78.67

84.2

73.23

MPSR

ResNet101

78.29

0.7654

68.22

87.18

75.31

80.29

65.89

86.19

79.16

82.9

QA-FewDet

ResNet101

74.01

0.7684

75.21

78.54

70.14

79.59

65.77

79.97

68.52

80.07

DeFRCN

ResNet101

80.46

0.7824

76.25

80.33

76.38

82.57

88.72

81.63

89.46

80.92

FCT

PvTv2

83.58

0.8381

80.71

87.16

81.41

82.05

83.73

82.5

89.74

76.17

Ours

PvTv2

85.29

0.8788

85.62

90.27

86.52

89.47

90.9

88.95

90.28

86.08