Table 3 Overview of input text length and its impact on coding performance.
From: Multi-label text classification via secondary use of large clinical real-world data sets
# of Tokens | > 512 | \(<=\) 512 | ||||||
---|---|---|---|---|---|---|---|---|
Model | Precision | Recall | F1-measure | MAP | Precision | Recall | F1-measure | MAP |
medBERT.de | 0.378 | 0.751 | 0.463 | 0.837 | 0.245 | 0.946 | 0.377 | 0.882 |
surgeryBERT.at | 0.374 | 0.741 | 0.459 | 0.820 | 0.241 | 0.937 | 0.372 | 0.869 |
fastText | 0.403 | 0.791 | 0.493 | 0.840 | 0.241 | 0.935 | 0.372 | 0.870 |
CNN | 0.375 | 0.743 | 0.460 | 0.817 | 0.237 | 0.923 | 0.366 | 0.853 |
SVM | 0.418 | 0.795 | 0.505 | 0.872 | 0.235 | 0.911 | 0.362 | 0.869 |
LR | 0.348 | 0.661 | 0.421 | 0.768 | 0.220 | 0.855 | 0.339 | 0.808 |