Table 3 Comparison results with other methods on the potsdam dataset

From: GLE-net: global-local information enhancement for semantic segmentation of remote sensing images

Method

IoU\(\%\)

Evaluation Index\(\%\)

Imp.surf.

Buliding

Lowveg.

Tree

Car

MIoU

Mean.F1

OA

FCN

83.48

89.45

75.56

74.42

82.55

86.51

79.06

81.11

UNet

83.56

86.30

75.92

75.01

81.75

87.03

77.35

83.06

Deeplab V3+

85.73

89.95

76.05

74.58

84.92

87.68

78.97

83.85

PSPNet

86.22

87.02

75.94

76.13

86.36

87.09

81.99

83.26

Trans-UNet

85.98

85.15

76.05

75.14

87.25

88.28

82.56

82.97

Swin-UNet

84.77

79.98

76.02

76.33

87.47

87.24

83.04

83.52

GLE-Net

87.43

89.89

77.53

77.83

87.46

87.33

85.55

86.04