Table 3 Comparative analysis of various machine learning algorithms for fusion, illustrating the superior performance of the RF classifier in our study’s context. All values are presented as the average (Mean) with a measure of variability (Standard Deviation, SD). Significant values are in bold.

From: Precise grading of non-muscle invasive bladder cancer with multi-scale pyramidal CNN

Fusion ML algorithms

Sensitivity %

Specificity %

Accuracy %

F1-Score %

RF

94.47 ± 0.93

94.03 ± 0.95

94.25 ± 0.70

94.29 ± 0.70

Adaboost

94.06 ± 1.04

93.50 ± 1.02

93.78 ± 0.80

93.82 ± 0.80

KNN

94.62 ± 1.34

93.68 ± 1.01

94.15 ± 0.86

94.20 ± 0.86

MLP

94.23 ± 0.97

93.19 ± 0.94

93.71 ± 0.64

93.77 ± 0.64