Table 3 Performance statistics of the different machine learning models, and EKFCcrea-equation, in the external validation dataset using only serum creatinine as biomarker.
External validation cohort (n = 8378) | |||||
---|---|---|---|---|---|
Methods | Median bias (95%CI) | IQR (P25-P75) | P10 (95%CI) | P30 (95%CI) | MSE |
EKFC | −0.90 [−1.30; −0.60] | 17.15 (−9.20, 7.50) | 0.43 [0.42; 0.44] | 0.87 [0.86; 0.87] | 296.49 |
RF | −0.39 [−0.73; −0.01] | 17.13 (−9.51, 8.20) | 0.41 [0.40; 0.42] | 0.85 [0.85; 0.86] | 294.24 |
LR | −3.06 [−3.51; −2.50] | 22.21 (−15.49, 9.77) | 0.31 [0.30; 0.32] | 0.76 [0.75; 0.77] | 509.88 |
XGBoost | −0.79 [−1.19; −0.41] | 17.86 (−10.71, 8.43) | 0.38 [0.37; 0.39] | 0.84 [0.83; 0.84] | 320.56 |