Table 2 Edge partition of boron oxide.

From: Analyzing boron oxide networks through Shannon entropy and Pearson correlation coefficient

Frequency of atomic bond

\((\mathcal {S}_{u}, S_{v})\)

\((\mathcal {M}_{u}, \mathcal {M}_{v})\)

\((\Omega _{u}, \Omega _{v})\)

\((r\Omega _{u}, r\Omega _{v})\)

\((s_{u}, s_{v})\)

\((rs_{u}, rs_{v})\)

4mn

(4,8)

(4,9)

\((1,\frac{8}{9})\)

\((1,\frac{9}{8})\)

(0, 1)

\((1,\frac{1}{2})\)

\(4mn+8\)

(6,7)

(9,12)

\((\frac{6}{9},\frac{7}{12})\)

\((\frac{9}{6},\frac{12}{7})\)

(3, 5)

\((\frac{1}{4},\frac{1}{6})\)

\(12m+8n-4m-8\)

(6,9)

(9,24)

\((\frac{6}{9},\frac{9}{24})\)

\((\frac{9}{6},\frac{24}{9})\)

(3, 15)

\((\frac{1}{4},\frac{1}{16})\)

\(2m+4\)

(7,9)

(12,24)

\((\frac{7}{12},\frac{9}{24})\)

\((\frac{12}{7},\frac{24}{9})\)

(5, 15)

\((\frac{1}{6},\frac{1}{16})\)

2m

(8,9)

(9,24)

\((\frac{8}{9},\frac{9}{24})\)

\((\frac{9}{8},\frac{24}{9})\)

(1, 15)

\((1,\frac{1}{16})\)

\(8mn-4n+6m+4\)

(8,11)

(24,24)

\((\frac{6}{9},\frac{11}{48})\)

\((\frac{9}{6},\frac{48}{11})\)

(1, 37)

\((1,\frac{1}{38})\)

\(6m-4\)

(9,9)

(24,24)

\((\frac{9}{24},\frac{9}{24})\)

\((\frac{24}{9},\frac{24}{9})\)

(15, 15)

\((\frac{1}{16},\frac{1}{16})\)

\(2m+8n-4mn+4\)

(9,11)

(24,48)

\((\frac{9}{24},\frac{11}{48})\)

\((\frac{24}{9},\frac{48}{11})\)

(15, 37)

\((\frac{1}{16},\frac{1}{38})\)

\(10m+8n-4mn+8\)

(9,12)

(24,81)

\((\frac{9}{24},\frac{12}{81})\)

\((\frac{24}{9},\frac{81}{12})\)

(15, 69)

\((\frac{1}{16},\frac{1}{70})\)

\(12mn-6m+8n+4\)

(11,11)

(48,48)

\((\frac{11}{48},\frac{11}{48})\)

\((\frac{48}{11},\frac{48}{11})\)

(37, 37)

\((\frac{1}{38},\frac{1}{38})\)

\(36mn+38m-16n+48\)

(11,12)

(48,81)

\((\frac{11}{48},\frac{12}{81})\)

\((\frac{48}{11},\frac{81}{12})\)

(37, 69)

\((\frac{1}{38},\frac{1}{70})\)