Table 2 Edge partition of boron oxide.
From: Analyzing boron oxide networks through Shannon entropy and Pearson correlation coefficient
Frequency of atomic bond | \((\mathcal {S}_{u}, S_{v})\) | \((\mathcal {M}_{u}, \mathcal {M}_{v})\) | \((\Omega _{u}, \Omega _{v})\) | \((r\Omega _{u}, r\Omega _{v})\) | \((s_{u}, s_{v})\) | \((rs_{u}, rs_{v})\) |
---|---|---|---|---|---|---|
4mn | (4,8) | (4,9) | \((1,\frac{8}{9})\) | \((1,\frac{9}{8})\) | (0, 1) | \((1,\frac{1}{2})\) |
\(4mn+8\) | (6,7) | (9,12) | \((\frac{6}{9},\frac{7}{12})\) | \((\frac{9}{6},\frac{12}{7})\) | (3, 5) | \((\frac{1}{4},\frac{1}{6})\) |
\(12m+8n-4m-8\) | (6,9) | (9,24) | \((\frac{6}{9},\frac{9}{24})\) | \((\frac{9}{6},\frac{24}{9})\) | (3, 15) | \((\frac{1}{4},\frac{1}{16})\) |
\(2m+4\) | (7,9) | (12,24) | \((\frac{7}{12},\frac{9}{24})\) | \((\frac{12}{7},\frac{24}{9})\) | (5, 15) | \((\frac{1}{6},\frac{1}{16})\) |
2m | (8,9) | (9,24) | \((\frac{8}{9},\frac{9}{24})\) | \((\frac{9}{8},\frac{24}{9})\) | (1, 15) | \((1,\frac{1}{16})\) |
\(8mn-4n+6m+4\) | (8,11) | (24,24) | \((\frac{6}{9},\frac{11}{48})\) | \((\frac{9}{6},\frac{48}{11})\) | (1, 37) | \((1,\frac{1}{38})\) |
\(6m-4\) | (9,9) | (24,24) | \((\frac{9}{24},\frac{9}{24})\) | \((\frac{24}{9},\frac{24}{9})\) | (15, 15) | \((\frac{1}{16},\frac{1}{16})\) |
\(2m+8n-4mn+4\) | (9,11) | (24,48) | \((\frac{9}{24},\frac{11}{48})\) | \((\frac{24}{9},\frac{48}{11})\) | (15, 37) | \((\frac{1}{16},\frac{1}{38})\) |
\(10m+8n-4mn+8\) | (9,12) | (24,81) | \((\frac{9}{24},\frac{12}{81})\) | \((\frac{24}{9},\frac{81}{12})\) | (15, 69) | \((\frac{1}{16},\frac{1}{70})\) |
\(12mn-6m+8n+4\) | (11,11) | (48,48) | \((\frac{11}{48},\frac{11}{48})\) | \((\frac{48}{11},\frac{48}{11})\) | (37, 37) | \((\frac{1}{38},\frac{1}{38})\) |
\(36mn+38m-16n+48\) | (11,12) | (48,81) | \((\frac{11}{48},\frac{12}{81})\) | \((\frac{48}{11},\frac{81}{12})\) | (37, 69) | \((\frac{1}{38},\frac{1}{70})\) |