Table 4 Experimental Results of the Algorithm on our datasets.
From: Fast moving table tennis ball tracking algorithm based on graph neural network
Algorithm Name | Train&Test Set | Validation Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Target | Relationship | Target | Relationship | |||||||||
Pre. | Rec. | F1. | Pre. | Rec. | F1. | Pre. | Rec. | F1. | Pre. | Rec. | F1. | |
\(\mathrm{YOLOv8(conf=0.01)}^{1}\) | 0.853 | 0.744 | 0.795 | N/A | N/A | N/A | 0.551 | 0.738 | 0.631 | N/A | N/A | N/A |
\(\mathrm{YOLOv8(conf=0.50)}^{1}\) | 0.924 | 0.647 | 0.761 | N/A | N/A | N/A | 0.838 | 0.576 | 0.683 | N/A | N/A | N/A |
\(\mathrm{YOLOv8(0.01-0.50)}^{2}\) | 0.908 | 0.685 | 0.781 | N/A | N/A | N/A | 0.773 | 0.641 | 0.701 | N/A | N/A | N/A |
\(\mathrm{SOT(0.05-0.95)}^{3}\) | N/A | N/A | N/A | 0.832 | 0.705 | 0.763 | N/A | N/A | N/A | 0.792 | 0.483 | 0.6 |
\(\mathrm{GMP(0.40-0.60)}^{4}\) | 0.88 | 0.946 | 0.912 | 0.865 | 0.927 | 0.895 | 0.981 | 0.946 | 0.963 | 0.912 | 0.938 | 0.925 |
\(\mathrm{GAT(0.40-0.60)}^{4}\) | 0.849 | 0.907 | 0.877 | 0.837 | 0.883 | 0.859 | 0.875 | 0.863 | 0.869 | 0.834 | 0.813 | 0.823 |
\(\mathrm{T-FORT}^{5}\) | 0.782 | 0.856 | 0.818 | 0.767 | 0.838 | 0.801 | N/A | N/A | N/A | N/A | N/A | N/A |
\(\textrm{FMO}^{5}\) | 0.711 | 0.592 | 0.646 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |