Table 6 Variable importance & performance metrics by classifier.

From: Development and validation of electronic health record-based, machine learning algorithms to predict quality of life among family practice patients

Mental risk

Physical risk

No information rate: 0.83

No information rate: 0.77

Classification method

Top 5 features

Accuracy

Sensitivity

Specificity

Balanced accuracy

Top 5 features

Accuracy

Sensitivity

Specificity

Balanced accuracy

Decision tree

Q8

Q9

Q6

Q10

Physical composite score

0.92

0.97

0.67

0.82

Q2

Q3

Q4

Q1

Number office

Visits-12Mos

0.97

1.0

0.83

0.92

Support vector machine

Q8

Q9

YNMDD

Q6

Q7

0.93

1.0

0.58

0.79

Q2

Q4

Q3

Q1

Mental composite score

0.9

0.9

0.9

0.9

Random forest

Q8

Q9

Q6

Physical composite score

Q2

0.97

0.97

1.0

0.98

Q2

Q3

Q4

Q5

Q10

0.96

0.99

0.79

0.89

Neural network

Physical composite score

Q9

Q8

Total impact score

Age at survey

0.92

0.96

0.74

0.85

Q2

Q3

Q5

YNOAU

Total impact Score

0.96

0.98

0.89

0.94

Boosting algorithms

Bernoulli

Q8

Q9

Q6

Q7

Physical composite score

0.97

0.96

1.0

0.98

Q2

Q3

Q4

Total impact score

Q1

0.92

1.0

0.53

0.76

AdaBoost

Q8

Q9

Q6

Tobacco use

Q7

0.96

0.95

1.0

0.97

Q2

Q4

Q3

Q1

Count of chronic conditions

0.9

0.88

1.0

0.94

XGBoost

Q9

Q8

Education

Impact CA

Impact CHF

0.93

0.91

1.0

0.96

Q4

Q3

Q2

Q1

Q9

0.9

0.91

0.88

0.89