Table 16 Comparison of state-of-the-art UAV image detection models on the VisDrone 2019 test set.

From: End to end polysemantic cooperative mixed task trainer for UAV target detection

Method

FPS

AP_s

mAP0.5

pedestrian

people

bicycle

car

van

trunk

tricycle

awning-tricycle

bus

motor

Faster R-CNN20

19

15.1

36.2

37.4

18.4

13.2

71.8

42.4

42.8

19.7

18.2

58.1

34.3

YOLOv5l69

16

11.9

37.4

44.3

36.7

15.7

73.8

39.1

36.3

22.7

12.1

50.2

42.8

CGMDet70

13

30.2

50.7

58.9

51.1

24.7

86.1

52.9

47.6

38.1

20.2

66.1

61.7

YOLOv8l71

17

29.7

44.1

46.7

37.3

18.2

82.1

48.8

42.7

34.3

18.1

62.7

50.1

VitDet46

14

10.1

34.5

27.19

18.33

14.79

55.24

39.77

40.13

27.79

35.05

44.99

41.73

TPH-YOLOv5-ensemble72

18

12.6

36.83

29.13

16.77

15.78

67.46

49.75

44.32

26.59

25.15

62.15

31.2

MFEFNet73

14

30.7

51.9

59.9

51.2

25.9

85.8

55.3

49.4

40.3

23.2

65.1

63.1

Pc-DETR(Ours)

19

36.9

54.9

61.66

53.27

24.77

87.62

56.11

50.13

41.22

43.98

65.91

64.33

  1. Significant values are in [bold].