Table 7 Comparison on VisDrones after using the normal model instead of the Backbone part. Including (Faster-RCNN19 and Cascade-RCNN62), reporting the average precision (AP) for different IOU thresholds, respectively. (Experimented on VisDrone 2019 dataset).

From: End to end polysemantic cooperative mixed task trainer for UAV target detection

 

Backbone

AP

AP_50

AP_75

AP_S

AP_M

AP_L

Faster-RCNN

ResNet-50

23.79

36.2

27.21

15.02

26.87

30.55

PoT-50

28.43

51.57

31.85

19.66

31.51

45.92

ResNet-101

25.13

38.72

28.85

16.36

28.21

33.07

PoT-101

29.71

53.53

33.13

20.94

32.79

47.88

Cascade-RCNN

ResNet-50

26.31

36.49

29.73

17.54

29.23

30.84

PoT-50

30.77

51.41

34.19

22

33.88

45.76

ResNet-101

32.16

33.73

35.58

23.39

35.24

28.08

PoT-101

33.44

54.4

36.85

24.67

36.52

48.75